Last edited 3 weeks ago

SAI internal peripheral

Applicable for STM32MP13x lines  STM32MP15x lines    STM32MP23x lines  STM32MP25x lines


1. Article purpose[edit | edit source]

The purpose of this article is to:

  • briefly introduce the SAI peripheral and its main features,
  • indicate the peripheral instances assignment at boot time and their assignment at runtime (including whether instances can be allocated to secure contexts),
  • list the software frameworks and drivers managing the peripheral,
  • explain how to configure the peripheral.

2. Peripheral overview[edit | edit source]

The SAI (Serial Audio Interface) peripheral offers a wide set of audio protocols, such as: I2S standards (LSB or MSB-justified), PCM/DSP, TDM and S/PDIF. The SAI contains two independent audio sub-blocks. Each sub-block has its own clock generator and I/O line controller, and can be configured either as transmitter or receiver.

Refer to the STM32 MPU reference manuals for the complete list of features, and to the software frameworks and drivers, introduced below, to see which features are implemented.

3. Peripheral usage[edit | edit source]

This chapter is applicable in the scope of the OpenSTLinux BSP running on the Arm® Cortex®-A processor(s), and the STM32CubeMPU Package running on the Arm® Cortex®-M processor.

3.1. Boot time assignment[edit | edit source]

3.1.1. On STM32MP1 series[edit | edit source]

The SAI peripheral is not used at boot time.

3.1.2. On STM32MP2 series[edit | edit source]

Click on How to.png to expand or collapse the legend...

  • means that the peripheral can be assigned to the given boot time context.
  • means that the peripheral is assigned by default to the given boot time context and that the peripheral is mandatory for the Yocto-based OpenSTLinux Embedded Software.
  • means that the peripheral can be assigned to the given boot time context, but this configuration is not supported in Yocto-based OpenSTLinux Embedded Software.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32 MPU reference manuals.

Domain Peripheral Boot time allocation Comment How to.png
Instance Cortex-A35
secure
(ROM code)
Cortex-A35
secure
(TF-A BL2)
Cortex-A35
nonsecure
(U-Boot)
Audio SAI SAI1
SAI2
SAI3
SAI4

3.2. Runtime assignment[edit | edit source]

3.2.1. On STM32MP13x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

STM32MP13 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by STM32 MPU Embedded Software:

  • means that the peripheral can be assigned to the given runtime context.
  • means that the peripheral is assigned by default to the given runtime context and that the peripheral is mandatory for the STM32 MPU Embedded Software distribution.
  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in STM32 MPU Embedded Software distribution.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32MP13 reference manuals.

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A7
secure
(OP-TEE)
Cortex-A7
non-secure
(Linux)
Audio SAI SAI1 Assignment (single choice)
SAI2 Assignment (single choice)

3.2.2. On STM32MP15x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

STM32MP15 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by STM32 MPU Embedded Software:

  • means that the peripheral can be assigned to the given runtime context.
  • means that the peripheral is assigned by default to the given runtime context and that the peripheral is mandatory for the STM32 MPU Embedded Software distribution.
  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in STM32 MPU Embedded Software distribution.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possiblities might be described in STM32MP15 reference manuals.

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A7
secure
(OP-TEE)
Cortex-A7
non-secure
(Linux)
Cortex-M4

(STM32Cube)
Audio SAI SAI1 Assignment (single choice)
SAI2 Assignment (single choice)
SAI3 Assignment (single choice)
SAI4 Assignment (single choice)

3.2.3. On STM32MP21x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

STM32MP21 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by Yocto-based OpenSTLinux Embedded Software:

  • means that the peripheral can be assigned to the given runtime context.
  • means that the peripheral is assigned by default to the given runtime context and that the peripheral is mandatory for the Yocto-based OpenSTLinux Embedded Software.
  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in Yocto-based OpenSTLinux Embedded Software.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32MP21 reference manuals.

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A35
secure
(OP-TEE /
TF-A BL31)
Cortex-A35
nonsecure
(Linux)
Cortex-M33
secure
(TF-M)
Cortex-M33
nonsecure
(STM32Cube)
Audio SAI SAI1 OP-TEE
SAI2 OP-TEE
SAI3 OP-TEE
SAI4 OP-TEE

3.2.4. On STM32MP23x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

STM32MP23 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by Yocto-based OpenSTLinux Embedded Software:

  • means that the peripheral can be assigned to the given runtime context.
  • means that the peripheral is assigned by default to the given runtime context and that the peripheral is mandatory for the Yocto-based OpenSTLinux Embedded Software.
  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in Yocto-based OpenSTLinux Embedded Software.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32MP23 reference manuals.

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A35
secure
(OP-TEE /
TF-A BL31)
Cortex-A35
nonsecure
(Linux)
Cortex-M33
secure
(TF-M)
Cortex-M33
nonsecure
(STM32Cube)
Audio SAI SAI1 OP-TEE
SAI2 OP-TEE
SAI3 OP-TEE
SAI4 OP-TEE

3.2.5. On STM32MP25x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

STM32MP25 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by Yocto-based OpenSTLinux Embedded Software:

  • means that the peripheral can be assigned to the given runtime context.
  • means that the peripheral is assigned by default to the given runtime context and that the peripheral is mandatory for the Yocto-based OpenSTLinux Embedded Software.
  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in Yocto-based OpenSTLinux Embedded Software.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32MP25 reference manuals.

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A35
secure
(OP-TEE /
TF-A BL31)
Cortex-A35
nonsecure
(Linux)
Cortex-M33
secure
(TF-M)
Cortex-M33
nonsecure
(STM32Cube)
Cortex-M0+
(STM32Cube)
Audio SAI SAI1 OP-TEE
SAI2 OP-TEE
SAI3 OP-TEE
SAI4 OP-TEE

4. Software frameworks and drivers[edit | edit source]

Below are listed the software frameworks and drivers managing the SAI peripheral for the embedded software components listed in the above tables.

5. How to assign and configure the peripheral[edit | edit source]

The peripheral assignment can be done via the STM32CubeMX graphical tool (and manually completed if needed).
This tool also helps to configure the peripheral:

  • partial device trees (pin control and clock tree) generation for the OpenSTLinux software components,
  • HAL initialization code generation for the STM32CubeMPU Package.

The configuration is applied by the firmware running in the context in which the peripheral is assigned.

When the Arm® Cortex®-A7 core operates in non-secure access mode, the SAI is controlled by the Linux kernel framework. Refer to SAI Linux driver to drive the SAI through Linux kernel ALSA framework. Refer to Soundcard configuration and SAI device tree configuration to configure the SAI through the Linux kernel device tree[1].

6. How to go further[edit | edit source]

STM32H7 SAI training [2] introduces the SAI features and applications. The SAI versions in STM32H7 and STM32MP1 series are very close. In consequence this training is also relevant for STM32MP1 series. The user should refer to the STM32MP13 reference manuals or STM32MP15 reference manuals for a complete description.

7. References[edit | edit source]