FMC internal peripheral

Applicable for STM32MP13x lines, STM32MP15x lines

1 Article purpose[edit]

The purpose of this article is to:

  • briefly introduce the FMC peripheral and its main features,
  • indicate the peripheral instances assignment at boot time and their assignment at runtime (including whether instances can be allocated to secure contexts),
  • list the software frameworks and drivers managing the peripheral,
  • explain how to configure the peripheral.

2 Peripheral overview[edit]

The FMC peripheral includes two memory controllers:

  • The NOR/PSRAM memory controller
  • The NAND memory controller.

Refer to the STM32 MPU reference manuals for the complete list of features, and to the software frameworks and drivers, introduced below, to see which features are implemented.

2.1 NOR/PSRAM memory controller (or external bus interface controller)[edit]

The FMC NOR/PSRAM memory controller is used to interface static memory devices, but it is also used to interface Ethernet devices, LCD devices, and so on.

The FMC NOR/PSRAM controller generates the appropriate signal timings to drive the following types of memories:

  • Asynchronous SRAM, FRAM and ROM
    • 8 bits
    • 16 bits
  • PSRAM (CellularRAM™)
    • Asynchronous mode
    • Burst mode for synchronous accesses with configurable option to split burst access when crossing boundary page for CRAM 1.5.
    • Multiplexed or non-multiplexed
  • NOR Flash memory
    • Asynchronous mode
    • Burst mode for synchronous accesses
    • Multiplexed or non-multiplexed

The FMC NOR/PSRAM controller supports a wide range of devices through programmable timings.
Among those programmable timings, there are:

  • Programmable wait states (up to 15)
  • Programmable bus turnaround cycles (up to 15)
  • Programmable output enable and write enable delays (up to 15)
  • Independent read and write timings and protocol to support the widest variety of memories and timings
  • Programmable continuous clock output.

The FMC NOR/PSRAM controller also supports up to four external devices.

2.2 NAND Flash controller[edit]

The FMC NAND Flash controller is used to interface STM32 MPU with SLC 8-bit or 16-bit NAND Flash memory devices.

The FMC NAND Flash controller supports:

  • Programmable error correction capability (ECC) using BCH8 code, BCH4 code or Hamming code
  • Programmable page size of 2048, 4096 and 8192 bytes
  • Programmable memory timings
  • Multiple dice per package.

3 Peripheral usage[edit]

This chapter is applicable in the scope of the OpenSTLinux BSP running on the Arm® Cortex®-A processor(s), and the STM32CubeMPU Package running on the Arm® Cortex®-M processor.

3.1 Boot time assignment[edit]

3.1.1 On STM32MP1 series[edit]

The FMC NAND Flash controller is the boot device that supports serial boot for Flash programming with STM32CubeProgrammer.

Click on the right to expand the legend...

Check boxes illustrate the possible peripheral allocations supported by STM32 MPU Embedded Software:

  • means that the peripheral can be assigned to the given boot time context.
  • means that the peripheral is assigned by default to the given boot time context and that the peripheral is mandatory for the STM32 MPU Embedded Software distribution.
  • means that the peripheral can be assigned to the given boot time context, but this configuration is not supported in STM32 MPU Embedded Software distribution.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32 MPU reference manuals.

Domain Peripheral Boot time allocation Comment
Instance Cortex-A7
secure
(ROM code)
Cortex-A7
secure
(TF-A BL2)
Cortex-A7
non-secure
(U-Boot)
Mass storage FMC FMC

3.2 Runtime assignment[edit]

3.2.1 On STM32MP13x lines More info.png[edit]

Click on the right to expand the legend...

STM32MP13 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by STM32 MPU Embedded Software:

  • means that the peripheral can be assigned to the given runtime context.
  • means that the peripheral is assigned by default to the given runtime context and that the peripheral is mandatory for the STM32 MPU Embedded Software distribution.
  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in STM32 MPU Embedded Software distribution.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32MP13 reference manuals.

Domain Peripheral Runtime allocation Comment
Instance Cortex-A7
secure
(OP-TEE)
Cortex-A7
non-secure
(Linux)
Mass storage FMC FMC Assignment (single choice)

3.2.2 On STM32MP15x lines More info.png[edit]

Click on the right to expand the legend...

STM32MP15 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by STM32 MPU Embedded Software:

  • means that the peripheral can be assigned to the given runtime context.
  • means that the peripheral is assigned by default to the given runtime context and that the peripheral is mandatory for the STM32 MPU Embedded Software distribution.
  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in STM32 MPU Embedded Software distribution.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possiblities might be described in STM32MP15 reference manuals.

Domain Peripheral Runtime allocation Comment
Instance Cortex-A7
secure
(OP-TEE)
Cortex-A7
non-secure
(Linux)
Cortex-M4

(STM32Cube)
Mass storage FMC FMC Assignment (single choice)

4 Software frameworks and drivers[edit]

Below are listed the software frameworks and drivers managing the FMC peripheral for the embedded software components listed in the above tables.

5 How to assign and configure the peripheral[edit]

The peripheral assignment can be done via the STM32CubeMX graphical tool (and manually completed if needed).
This tool also helps to configure the peripheral:

  • partial device trees (pin control and clock tree) generation for the OpenSTLinux software components,
  • HAL initialization code generation for the STM32CubeMPU Package.

The configuration is applied by the firmware running in the context in which the peripheral is assigned.

For Linux kernel configuration, please refer to FMC device tree configuration.