Last edited 2 months ago

I2C internal peripheral

Applicable for STM32MP13x lines, STM32MP15x lines, STM32MP25x lines

Warning white.png Warning
Concerning the STM32MP25x lines More info.png, only the boot time assignment table and the runtime assignment table have been updated.
The other chapters have not been updated yet.


1. Article purpose[edit | edit source]

The purpose of this article is to:

  • briefly introduce the I2C peripheral and its main features,
  • indicate the peripheral instances assignment at boot time and their assignment at runtime (including whether instances can be allocated to secure contexts),
  • list the software frameworks and drivers managing the peripheral,
  • explain how to configure the peripheral.

2. Peripheral overview[edit | edit source]

The I2C bus interface serves as an interface between the microcontroller and the serial I2C bus.
It provides multi-master capability, and controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C controller allows to be a slave as well if need be.
It is also SMBus 2.0 compatible.

For more information about I2C please refer to this link: I2C wikipedia[1] or i2c-bus.org[2]
For more information about SMBus please refer to this link: SMBus wikipedia[3] or i2c-bus.org[4]

Here are the main features:

  • Multi-master
  • Standard (100 KHz) and fast speed modes (400 KHz and Plus 1 MHz)
  • I2C 10-bit address
  • I2C slave capabilities (programmable I2C address)
  • DMA capabilities
  • SMBus 2.0 compatible
    • Standard bus protocol (quick command; byte, word, block read/write)
    • Host notification
    • Alert

Refer to the STM32 MPU reference manuals for the complete list of features, and to the software frameworks and drivers, introduced below, to see which features are implemented.

3. Peripheral usage[edit | edit source]

This chapter is applicable in the scope of the OpenSTLinux BSP running on the Arm® Cortex®-A processor(s), and the STM32CubeMPU Package running on the Arm® Cortex®-M processor.

3.1. Boot time assignment[edit | edit source]

3.1.1. On STM32MP1 series[edit | edit source]

The I2C peripheral is usually not used at boot time. But it may be used by the SSBL and/or FSBL (see Boot chain overview), for example, to configure a PMIC (see PMIC hardware components), or to access data stored in an external EEPROM.

Click on How to.png to expand or collapse the legend...

Check boxes illustrate the possible peripheral allocations supported by STM32 MPU Embedded Software:

  • means that the peripheral can be assigned to the given boot time context.
  • means that the peripheral is assigned by default to the given boot time context and that the peripheral is mandatory for the STM32 MPU Embedded Software distribution.
  • means that the peripheral can be assigned to the given boot time context, but this configuration is not supported in STM32 MPU Embedded Software distribution.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32 MPU reference manuals.

Domain Peripheral Boot time allocation Comment How to.png
Instance Cortex-A7
secure
(ROM code)
Cortex-A7
secure
(TF-A BL2)
Cortex-A7
non-secure
(U-Boot)
Low speed interface I2C Any instance

3.1.2. On STM32MP2 series[edit | edit source]

Click on How to.png to expand or collapse the legend...

  • means that the peripheral can be assigned to the given boot time context.
  • means that the peripheral is assigned by default to the given boot time context and that the peripheral is mandatory for the STM32 MPU Embedded Software distribution.
  • means that the peripheral can be assigned to the given boot time context, but this configuration is not supported in STM32 MPU Embedded Software distribution.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32MP25 reference manuals.

Domain Peripheral Boot time allocation Comment How to.png
Instance Cortex-A35
secure
(ROM code)
Cortex-A35
secure
(TF-A BL2)
Cortex-A35
non-secure
(U-Boot)
Low speed interface I2C Any instance

3.2. Runtime assignment[edit | edit source]

3.2.1. On STM32MP13x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

STM32MP13 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by STM32 MPU Embedded Software:

  • means that the peripheral can be assigned to the given runtime context.
  • means that the peripheral is assigned by default to the given runtime context and that the peripheral is mandatory for the STM32 MPU Embedded Software distribution.
  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in STM32 MPU Embedded Software distribution.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32MP13 reference manuals.

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A7
secure
(OP-TEE)
Cortex-A7
non-secure
(Linux)
Low speed interface I2C I2C1
I2C2
I2C3 Assignment (single choice)
I2C4 Assignment (single choice).
Used for PMIC control on ST boards.
I2C5 Assignment (single choice)

3.2.2. On STM32MP15x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

STM32MP15 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by STM32 MPU Embedded Software:

  • means that the peripheral can be assigned to the given runtime context.
  • means that the peripheral is assigned by default to the given runtime context and that the peripheral is mandatory for the STM32 MPU Embedded Software distribution.
  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in STM32 MPU Embedded Software distribution.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possiblities might be described in STM32MP15 reference manuals.

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A7
secure
(OP-TEE)
Cortex-A7
non-secure
(Linux)
Cortex-M4

(STM32Cube)
Low speed interface I2C I2C1 Assignment (single choice)
I2C2 Assignment (single choice)
I2C3 Assignment (single choice)
I2C4 Assignment (single choice).
Used for PMIC control on ST boards.
I2C5 Assignment (single choice)
I2C6 Assignment (single choice)

3.2.3. On STM32MP25x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

STM32MP25 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by STM32 MPU Embedded Software:

  • means that the peripheral can be assigned to the given runtime context.
  • means that the peripheral is assigned by default to the given runtime context and that the peripheral is mandatory for the STM32 MPU Embedded Software distribution.
  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in STM32 MPU Embedded Software distribution.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32MP25 reference manuals.

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A35
secure
(OP-TEE /
TF-A BL31)
Cortex-A35
non-secure
(Linux)
Cortex-M33
secure
(TF-M)
Cortex-M33
non-secure
(STM32Cube)
Cortex-M0+
Warning.png
(STM32Cube)
Low speed interface I2C I2C1 OP-TEE
TF-A BL31
I2C2 OP-TEE
TF-A BL31
I2C3 OP-TEE
TF-A BL31
I2C4 OP-TEE
TF-A BL31
I2C5 OP-TEE
TF-A BL31
I2C6 OP-TEE
TF-A BL31
I2C7 OP-TEE
TF-A BL31
I2C8 OP-TEE
TF-A BL31

4. Software frameworks and drivers[edit | edit source]

Below are listed the software frameworks and drivers managing the I2C peripheral for the embedded software components listed in the above tables.

5. How to assign and configure the peripheral[edit | edit source]

The peripheral assignment can be done via the STM32CubeMX graphical tool (and manually completed if needed).
This tool also helps to configure the peripheral:

  • partial device trees (pin control and clock tree) generation for the OpenSTLinux software components,
  • HAL initialization code generation for the STM32CubeMPU Package.

The configuration is applied by the firmware running in the context in which the peripheral is assigned.

For Linux® kernel configuration, please refer to I2C configuration.

Please refer to I2C device tree configuration for detailed information on how to configure I2C peripherals.

6. References[edit | edit source]