Last edited 2 months ago

HDP internal peripheral

Applicable for STM32MP13x lines, STM32MP15x lines

1. Article purpose[edit | edit source]

The purpose of this article is to:

  • briefly introduce the HDP peripheral and its main features,
  • indicate the peripheral instances assignment at boot time and their assignment at runtime (including whether instances can be allocated to secure contexts),
  • list the software frameworks and drivers managing the peripheral,
  • explain how to configure the peripheral.

2. Peripheral overview[edit | edit source]

The HDP peripheral is used to output some internal signals on up to 8 GPIO pins.

Follow the sequence below to connect a GPIO to an internal signal via the HDP:

  • First of all, look for the internal signal you want to monitor in the HDP signal multiplexing table of the STM32MP13 reference manuals or STM32MP15 reference manuals:
    • Search for the HDP signal on which you can get it among eight possible choices.
    • Note the corresponding HDPx multiplexing value to select.
  • Then, look for the most suitable GPIO pin on which you can output HDPx (in the datasheets for STM32MP13x lines More info.png and datasheets for STM32MP15x lines More info.png):
    • Note the GPIO bank and pin.
    • Note the corresponding GPIO alternate function (AF) to select.

The GPIO bank, pin, alternate function and HDPx multiplexing value are the information required to configure each HDP signal.

Refer to the STM32 MPU reference manuals for the complete list of features, and to the software frameworks and drivers, introduced below, to see which features are implemented.

3. Peripheral usage[edit | edit source]

This chapter is applicable in the scope of the OpenSTLinux BSP running on the Arm® Cortex®-A processor(s), and the STM32CubeMPU Package running on the Arm® Cortex®-M processor.

3.1. Boot time assignment[edit | edit source]

The HDP peripheral is not used at boot time.

3.2. Runtime assignment[edit | edit source]

3.2.1. On STM32MP13x lines More info.png[edit | edit source]

Click on the right to expand the legend...

STM32MP13 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by STM32 MPU Embedded Software:

  • means that the peripheral can be assigned () to the given runtime context.
  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in STM32 MPU Embedded Software distribution.
  • is used for system peripherals that cannot be unchecked because they are statically connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32MP13 reference manuals.

Domain Peripheral Runtime allocation Comment
Instance Cortex-A7
secure
(OP-TEE)
Cortex-A7
non-secure
(Linux)
Trace & Debug HDP HDP

3.2.2. On STM32MP15x lines More info.png[edit | edit source]

Click on the right to expand the legend...

STM32MP15 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by STM32 MPU Embedded Software:

  • means that the peripheral can be assigned () to the given runtime context.
  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in STM32 MPU Embedded Software distribution.
  • is used for system peripherals that cannot be unchecked because they are statically connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possiblities might be described in STM32MP15 reference manuals.

Domain Peripheral Runtime allocation Comment
Instance Cortex-A7
secure
(OP-TEE)
Cortex-A7
non-secure
(Linux)
Cortex-M4

(STM32Cube)
Trace & Debug HDP HDP

4. Software frameworks and drivers[edit | edit source]

Below are listed the software frameworks and drivers managing the HDP peripheral for the embedded software components listed in the above tables.

5. How to assign and configure the peripheral[edit | edit source]

The peripheral assignment can be done via the STM32CubeMX graphical tool (and manually completed if needed).
This tool also helps to configure the peripheral:

  • partial device trees (pin control and clock tree) generation for the OpenSTLinux software components,
  • HAL initialization code generation for the STM32CubeMPU Package.

The configuration is applied by the firmware running in the context in which the peripheral is assigned.