Last edited 4 months ago

VENC internal peripheral: Difference between revisions


Latest revision as of 15:59, 22 October 2024


1. Article purpose[edit | edit source]

The purpose of this article is to:

  • briefly introduce the VENC peripheral and its main features,
  • indicate the peripheral instances assignment at boot time and their assignment at runtime (including whether instances can be allocated to secure contexts),
  • list the software frameworks and drivers managing the peripheral,
  • explain how to configure the peripheral.

2. Peripheral overview[edit | edit source]

The VENC (Video ENCoder) peripheral is an hardware accelerator for video compressed content encoding such as H264 or VP8 bitstream and for still-image content encoding such as JPEG or WebP bitstream.

Refer to the STM32 MPU reference manuals for the complete list of features, and to the software frameworks and drivers, introduced below, to see which features are implemented.

3. Peripheral usage[edit | edit source]

This chapter is applicable in the scope of the OpenSTLinux BSP running on the Arm® Cortex®-A processor(s).

3.1. Boot time assignment[edit | edit source]

3.1.1. On STM32MP25x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

Domain Peripheral Boot time allocation Comment How to.png
Instance Cortex-A35
secure
(ROM code)
Cortex-A35
secure
(TF-A BL2)
Cortex-A35
nonsecure
(U-Boot)
Visual VENC VENC

3.2. Runtime assignment[edit | edit source]

3.2.1. On STM32MP25x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A35
secure
(OP-TEE /
TF-A BL31)
Cortex-A35
nonsecure
(Linux)
Cortex-M33
secure
(TF-M)
Cortex-M33
nonsecure
(STM32Cube)
Cortex-M0+
(STM32Cube)
Visual VENC VENC OP-TEE

4. Software frameworks and drivers[edit | edit source]

Below are listed the software frameworks and drivers managing the VENC peripheral for the embedded software components listed in the above tables.

5. How to assign and configure the peripheral[edit | edit source]

The peripheral assignment can be done via the STM32CubeMX graphical tool (and manually completed if needed).
This tool also helps to configure the peripheral by generating:

  • partial device trees (pin control and clock tree) for the OpenSTLinux software components,
  • HAL initialization code for the STM32CubeMPU Package.

The configuration is applied by the firmware running in the context in which the peripheral is assigned.

See also additional information in the VENC device tree configuration article for Linux®.

6. References[edit | edit source]