USBPHYC internal peripheral

Revision as of 18:16, 19 June 2023 by Registered User (Assignment tables reviewed with architects)
Applicable for STM32MP13x lines, STM32MP15x lines

1. Article purpose[edit source]

The purpose of this article is to:

  • briefly introduce the USBPHYC peripheral and its main features,
  • indicate the peripheral instances assignment at boot time and their assignment at runtime (including whether instances can be allocated to secure contexts),
  • list the software frameworks and drivers managing the peripheral,
  • explain how to configure the peripheral.

2. Peripheral overview[edit source]

The USBPHYC peripheral is a block that contains a dual port USB high-speed UTMI+ PHY and a UTMI switch. It makes the interface between:

  • the internal USB controllers (USBH and OTG)
  • the external USB physical lines (DP, DM)

The USBPHYC peripheral:

  • controls a two port high-speed PHY:
    • Port1 connected to the USBH controller
    • Port2 connected via the UTMI+switch to the USBH or to the OTG controller
  • sets the PLL values
  • performs other controls (and monitoring) on the PHY.

USBPHYC.png

Refer to the STM32 MPU reference manuals for the complete list of features, and to the software frameworks and drivers, introduced below, to see which features are implemented.

3. Peripheral usage[edit source]

This chapter is applicable in the scope of the OpenSTLinux BSP running on the Arm® Cortex®-A processor(s), and the STM32CubeMPU Package running on the Arm® Cortex®-M processor.

3.1. Boot time assignment[edit source]

3.1.1. On STM32MP1 series[edit source]

USBPHYC instances are boot devices that support Flash programming with STM32CubeProgrammer.

The USBPHYC peripheral is used by ROM code, FSBL and SSBL when using OTG in Device mode (DFU).


Click on How to.png to expand or collapse the legend...

Check boxes illustrate the possible peripheral allocations supported by STM32 MPU Embedded Software:

  • means that the peripheral can be assigned to the given boot time context.
  • means that the peripheral is assigned by default to the given boot time context and that the peripheral is mandatory for the STM32 MPU Embedded Software distribution.
  • means that the peripheral can be assigned to the given boot time context, but this configuration is not supported in STM32 MPU Embedded Software distribution.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32 MPU reference manuals.

Domain Peripheral Boot time allocation Comment How to.png
Instance Cortex-A7
secure
(ROM code)
Cortex-A7
secure
(TF-A BL2)
Cortex-A7
non-secure
(U-Boot)
High speed interface USBPHYC (USB HS PHY controller) USBPHYC (USB HS PHY controller) The USBPHYC can be used by ROM code, FSBL and SSBL in DFU mode to support serial boot.
It can be used also in U-boot by OTG and USBH with command line tools.

3.2. Runtime assignment[edit source]

3.2.1. On STM32MP13x lines More info.png[edit source]

Click on How to.png to expand or collapse the legend...

STM32MP13 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by STM32 MPU Embedded Software:

  • means that the peripheral can be assigned to the given runtime context.
  • means that the peripheral is assigned by default to the given runtime context and that the peripheral is mandatory for the STM32 MPU Embedded Software distribution.
  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in STM32 MPU Embedded Software distribution.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32MP13 reference manuals.

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A7
secure
(OP-TEE)
Cortex-A7
non-secure
(Linux)
High speed interface USBPHYC (USB HS PHY controller) USBPHYC (USB HS PHY controller) Assignment (single choice)

3.2.2. On STM32MP15x lines More info.png[edit source]

Click on How to.png to expand or collapse the legend...

STM32MP15 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by STM32 MPU Embedded Software:

  • means that the peripheral can be assigned to the given runtime context.
  • means that the peripheral is assigned by default to the given runtime context and that the peripheral is mandatory for the STM32 MPU Embedded Software distribution.
  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in STM32 MPU Embedded Software distribution.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possiblities might be described in STM32MP15 reference manuals.

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A7
secure
(OP-TEE)
Cortex-A7
non-secure
(Linux)
Cortex-M4

(STM32Cube)
High speed interface USBPHYC (USB HS PHY controller) USBPHYC (USB HS PHY controller)

4. Software frameworks and drivers[edit source]

Below are listed the software frameworks and drivers managing the USBPHYC peripheral for the embedded software components listed in the above tables.

5. How to assign and configure the peripheral[edit source]

The peripheral assignment can be done via the STM32CubeMX graphical tool (and manually completed if needed).
This tool also helps to configure the peripheral:

  • partial device trees (pin control and clock tree) generation for the OpenSTLinux software components,
  • HAL initialization code generation for the STM32CubeMPU Package.

The configuration is applied by the firmware running in the context in which the peripheral is assigned.

For U-boot and Linux kernel configuration, please refer to USBPHYC device tree configuration.