- Last edited 2 months ago ago
Coral Python object detection
This article explains how to experiment with Coral Edge TPU[1] applications for object detection based on the COCO SSD MobileNet v1 model using TensorFlow Lite Python runtime.
Contents
1 Description[edit]
The object detection[2] neural network model allows identification and localization of a known object within an image.
The application enables three main features :
- A camera streaming preview implemented using Gstreamer
- A NN inference based on the camera (or test data pictures) inputs is being ran by the Coral Edge TPU[1] TensorFlow Lite[3] interpreter
- A user interface implemented using Python GTK.
With this application the inference of the NN is mainly handled by the Coral Edge TPU[1], while the CPU deals mostly with the streaming camera and GUI.
The model used with this application is the COCO SSD MobileNet v1 downloaded from the object detection overview[2] and converted for the Coral Edge TPU.
2 Installation[edit]
2.1 Install from the OpenSTLinux AI package repository[edit]
After having configured the AI OpenSTLinux package you can install X-LINUX-AI components for this application:
apt-get install tflite-cv-apps-edgetpu-object-detection-python
Then restart the demo launcher:
systemctl restart weston-graphical-session.service
2.2 Source code location[edit]
The objdetect_tfl.py Python script is available:
- in the Openembedded OpenSTLinux Distribution with X-LINUX-AI Expansion Package:
- <Distribution Package installation directory>/layers/meta-st/meta-st-x-linux-ai/recipes-samples/tflite-cv-apps-edgetpu/files/object-detection/python/objdetect_tfl.py
- on the target:
- /usr/local/demo-ai/computer-vision/tflite-object-detection-edgetpu/python/objdetect_tfl.py
- on GitHub:
3 How to use the application[edit]
3.1 Launching via the demo launcher[edit]
3.2 Executing with the command line[edit]
The Python script objdetect_tfl.py application is located in the userfs partition:
/usr/local/demo-ai/computer-vision/tflite-object-detection-edgetpu/python/objdetect_tfl.py
It accepts the following input parameters:
usage: objdetect_tfl.py [-h] [-i IMAGE] [-v VIDEO_DEVICE] [--frame_width FRAME_WIDTH] [--frame_height FRAME_HEIGHT] [--framerate FRAMERATE] [-m MODEL_FILE] [-l LABEL_FILE]
[-e EXT_DELEGATE] [-p {std,max}] [--edgetpu] [--input_mean INPUT_MEAN] [--input_std INPUT_STD] [--validation] [--num_threads NUM_THREADS]
[--maximum_detection MAXIMUM_DETECTION] [--threshold THRESHOLD]
options:
-h, --help show this help message and exit
-i IMAGE, --image IMAGE
image directory with image to be classified
-v VIDEO_DEVICE, --video_device VIDEO_DEVICE
video device ex: video0
--frame_width FRAME_WIDTH
width of the camera frame (default is 320)
--frame_height FRAME_HEIGHT
height of the camera frame (default is 240)
--framerate FRAMERATE
framerate of the camera (default is 15fps)
-m MODEL_FILE, --model_file MODEL_FILE
.tflite model to be executed
-l LABEL_FILE, --label_file LABEL_FILE
name of file containing labels
-e EXT_DELEGATE, --ext_delegate EXT_DELEGATE
external_delegate_library path
-p {std,max}, --perf {std,max}
[EdgeTPU ONLY] Select the performance of the Coral EdgeTPU
--edgetpu enable Coral EdgeTPU acceleration
--input_mean INPUT_MEAN
input mean
--input_std INPUT_STD
input standard deviation
--validation enable the validation mode
--num_threads NUM_THREADS
Select the number of threads used by tflite interpreter to run inference
--maximum_detection MAXIMUM_DETECTION
Adjust the maximum number of object detected in a frame accordingly to your NN model (default is 10)
--threshold THRESHOLD
threshold of accuracy above which the boxes are displayed (default 0.60)
3.3 Testing with COCO SSD MobileNet V1[edit]
The model used for test is the detect_edgetpu.tflite downloaded from the object detection overview[2] and converted for the Coral Edge TPU. If you are interested, please take a look at how this model has been converted.
To ease launching of the application, two shell scripts are available:
- launch object detection based on camera frame inputs
/usr/local/demo-ai/computer-vision/tflite-object-detection-edgetpu/python/launch_python_objdetect_tfl_edgetpu_coco_ssd_mobilenet.sh
- launch object detection based on the pictures located in /usr/local/demo-ai/computer-vision/models/mobilenet/testdata directory
/usr/local/demo-ai/computer-vision/tflite-object-detection-edgetpu/python/launch_python_objdetect_tfl_edgetpu_coco_ssd_mobilenet_testdata.sh