USBPHYC internal peripheral

Stable: 19.06.2023 - 16:16 / Revision: 19.06.2023 - 16:16

I am here to prevent the first-page-empty bug!

1 Article purpose

The purpose of this article is to

  • briefly introduce the USBPHYC peripheral and its main features
  • indicate the level of security supported by this hardware block
  • explain how each instance can be allocated to the three runtime contexts and linked to the corresponding software components
  • explain, when necessary, how to configure the USBPHYC peripheral.

2 Peripheral overview

The USBPHYC peripheral is a block that contains a dual port USB high-speed UTMI+ PHY and a UTMI switch. It makes the interface between:

  • the internal USB controllers (USBH and OTG)
  • the external USB physical lines (DP, DM)

2.1 Features

The USBPHYC peripheral:

  • controls a two port high-speed PHY:
    • Port1 connected to the USBH controller
    • Port2 connected via the UTMI+switch to the USBH or to the OTG controller
  • sets the PLL values
  • performs other controls (and monitoring) on the PHY.

USBPHYC.png

Refer to STM32MP15 reference manuals for the complete list of features, and to the software components, introduced below, to see which features are implemented.

2.2 Security support

The USBPHYC is a non-secure peripheral.

3 Peripheral usage and associated software

3.1 Boot time

USBPHYC instances are boot devices that support Flash programming with STM32CubeProgrammer.

The USBPHYC peripheral is used by ROM code, FSBL and SSBL when using OTG in Device mode (DFU).

The SSBL can use OTG in Host mode or USBH (mass storage). The USBPHYC peripheral can be used to boot on a kernel stored on a USB key, or after a kernel panic to perform the crash dump saving to the USB key.

3.2 Runtime

3.2.1 Overview

The USBPHYC peripheral can be allocated to the the Arm®Cortex®-A7 non-secure core to be used under Linux® with PHY framework.

The peripheral assignment chapter describes which peripheral instance can be assigned to which context.

3.2.2 Software frameworks

Internal peripherals software table template

| High-speed interface
| USBPHYC (USB HS PHY controller)
| 
| Linux PHY framework
| 
|
|-
|}

3.2.3 Peripheral configuration

The configuration is applied by the firmware running in the context to which the peripheral is assigned. The configuration can be done alone via the STM32CubeMX tool for all internal peripherals, and then manually completed (particularly for external peripherals) according to the information given in the corresponding software framework article.

For Linux kernel configuration, please refer to USBPHYC device tree configuration.

3.2.4 Peripheral assignment

Internal peripherals assignment table template

| rowspan="1" | High speed interface
| rowspan="1" | USBPHYC (USB HS PHY controller)
| USBPHYC (USB HS PHY controller)
| 
| 
|
|
|-
|}


IMPORTANT NOTICE – READ CAREFULLY
STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.