ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

‘ ,l life.augmented

SPI overview

SPI overview

SPI overview — 15.06.2021

For further informatio tact your local STMicroelectronics sales office.

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

‘,_l SPI overview

Contents

L. SPI OVEIVIEW ...ttt ettt h ekt h e e bt o4 H bt e 4kt e o h bt 44 bt e 44 a bt e e ket 4o e b et ek b e e oA e L4 ehE e 4Rt e h e et b et e e e e e bt et e e e e e e e 13
2. How to use SPI from LinuX USErland WIth SPIGEVcoiiuuiiiiiiiiiieee ittt e et e e e ettt e e e e e e e ettt e e et eeeeannreeens 13
3. How to use the Kernel dyNAMIC OBDUQooiiuuiiieiiiiie et e e e et e e e ettt e e et e e e ettt e e e e anb e e e e ensteeeeeentteeeeennneees 13
4. Menuconfig or NOW t0 CONFIGUIE KEIMEIcoi ettt e e e ettt e e e s sttt e e e s as et e e e e ne e e e e s e e e e ennteeeeeenneeeeennnnees 13
oIS o e (=Tt TSI oo)0 [0 = Lo) o SR 13
(SIS I T a1 (=T aF= U 0 T= T o] 1= = | S 13

bs-flaggedrevsconnector-addstabledatetochapterheadlinesmodifier-laststable-tag-text: 22.02.2021 - 10:10 / bs-flaggedrevsconnector-
addstabledatetochapterheadlinesmodifier-stablerevisiondate-tag-text: 22.02.2021 - 08:34

For further information contact your local STMicroelectronics sales office. Page 2 of 24

https://wiki.st.com

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

‘,_l SPI overview

This article gives basic information about the Linux®SPI framework and STM32 SPI driver installation. It explains how to use
the SPI and more specifically:

® how to activate the SPI interface on a Linux®BSP

® how to access the SPI from kernel space

® how to access the SPI from user space.

While the STM32 SPI controller supports both master and slave modes, the STM32 Linu
x driver currently only supports SPI master mode.

Contents
1 FramEWOIK PUIMDOSE ...ttt ettt et e e e et e e e e e e e e e e e e e e e eeaaaaaaa e aneeetestee e e es e e e e e e e aeeeaaaaaaeaaaaeaaaenns 5
2 SYSEEIM OVEIVIEW ...iieiiiiitteie e e e ettt e e e ettt e e e 44kttt e 4444 et e 4244 a skttt e e e oo ek s e et e e e e e e s b e e e e e e e e annnne s 16
P2 o] a g oTo] g 1=T o | ae [=ETod 1]] 1o] I PP PP 16
2.1.1 Board eXterNal SPI EVICESuuuuiiiiiiiiiiiieei et ee e e 16
2.1.2 STM32 SPI internal peripheral controller ... e 16
0 G T o S 1 7 17
0t O B o o 0] = 17
A I oAV 0 L= ot o YT SO 17
00 B T o] [[17
0 O Y o] o] o 1 o o P 17
A S e Wo [o] 0 o o 17
2.2.1 User SPace aPPlICALIONeiiiiiiiiiiiiiiee ettt e e et e e e e s e e e e s e r e e e e e e asbnnreeeeeaaae 17
2.2.2 Kernel space peripheral driVEEooo i e e e 18
I Odo] 1 1o 18] =110 o HE PP P PP PPPPT PP 19
3.1 KerNel CONFIQUIALIONuvviiiieiieiiiei e e e e e e e e e e e e e e aaaaaaaaeaaaeas 19
3.2 Device tre€ CONfIQUIALIONviiiiiiiieiieecee e e e e e e e e e e e e e e e e aaaaaaaaeas 19
4 HOW t0 USE the fraMEWOTKcoiiiiiiiiiiii ettt e e e s e e e e e e et e e e e e e s anes 20
5 How to trace and debug the frameWOrkcccciiiiiii e 21
L0 R o [0) (o I (= Lo TSR P PP P PP TP 21
5.1.1 Activating SPI framework debug MESSAQGEScooiuiiiiiiiiiiiiiiiiiie e 21
5.1.2 DYNAIMIC TFACEuteeiieeiiiiiiiitee e e eaeitte e e e e e ettt e e e e e ettt e e e e e an kbbb et e e e e e e nbb e e e e e e e e eansbnnneeeeeaanes 21
V2 o [0V (o Jo (=] 0T PP PRI 21
5.2.1 Detecting SPI cONfIQUIAtioNuuveiiiiiiiiiiiiiiec e 21
LS I S V) £ PP 21
Lo o = P 22
(SIS To 18] fol= oo o [N (o To%= 11 0] o ISP 23
A =3 (=] (=] o =S 24

For further information contact your local STMicroelectronics sales office. Page 3 of 24

https://wiki.st.com
https://wiki.st.com

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

‘,_l SPI overview

1 Framework purpose

The Linux kernel provides a specific framework for spilt] protocol support. The SPI (serial peripheral interface) is a
synchronous serial communication interface used for short distance communications, mainly in embedded systems.

This interface was created by Motorola and has become a de facto standard. As it is not defined by a consortium such as 1°c,
there are different signal names and signal polarity modes.

SPI devices communicate either in Full duplex, Half duplex, or Simplex (rx/tx) mode using a master-slave architecture with a
single master.

The Linux kernel SPI framework provides a complete support for SPI master (the Linux kernel initiates SPl messaging on the
bus) and more recently for SPI slave (the Linux kernel answers to requests from the bus master).

See [@ for an introduction on the Linux kernel SPI framework.

For further information contact your local STMicroelectronics sales office. Page 4 of 24

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

"_I SPI overview

2 System overview

The user can add many SPI external devices around the microprocessor device, to create a custom board. Each external
device can be accessed through the SPI from the user space or the kernel space.

SPI i
system overview
ST communiy i3
s
Application
User space spidev interface

Kernel space
Slave device
driver #1

spi-core

SPI
driver controller
~ Hardware 0 00—

| l ISF’I bus 1 SPI bus 2

Board Slave device Slave device Slave device
#1 #2 #3

2.1 Component description

2.1.1 Board external SPI devices

Slave devices ‘X' are physical devices (connected to the STM32 microprocessor via an SPI bus) that behave as slaves with
respect to the STM32.

The STM32 is the SPI bus master.

A chip select signal allows selecting independently each slave device.

2.1.2 STM32 SPI internal peripheral controller

The STM32 SPI controller handles any external SPI devices connected to the same bus.

The STM32 microprocessor devices usually embed several instances of the SPI internal peripheral allowing to manage multiple
SPI buses.

For more information about STM32 SPI internal peripherals, please refer to SPI_internal_peripheral#SPI_main_features

For further information contact your local STMicroelectronics sales office. Page 5 of 24

https://wiki.st.com

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

‘,_l SPI overview

213 Spi-stm32

The STM32 SPI controller driver offers an ST SPI internal peripheral abstraction layer to the spi-core.
It defines all the SPI transfer methods to be used by the SPI core base.

2.1.4 spi-core

spi-core is the "brain of the communication™: it instantiates and manages all buses and peripherals.
® As stated by its name, this is the SPI engine. It is also in charge of parsing device tree entries both for adapter and devices.
It implements the standard SPI modes: 0, 1, 2 and 3.

2.1.5 Slave device drivers

This layer represents all the drivers associated to physical peripherals.

2.1.6 spidev

spidev is the interface between the user and the peripheral. This is a kernel driver that offers a unified SPI bus access to the
user space application using this dev-interface API. See API Description for examples.

2.1.7 Application

The application can control all peripherals thanks to the spidev interface.

2.2 API description

221 User space application

The user space application uses a kernel driver (spidev) for SPI transfers through the devfs.

Let's take the example of an SPI device connected to bus B with chip select C. The spidev driver provides the following
interfaces:

® /dev/spidevB.C: character special device created by "udev" that is used by the user space application to control and transfer
data to the SPI device.

Supported system calls : open(), close(), read(), write(), ioctl(), llseek(), release().

Constant Description
SPI_IOC_RD_MODE, SPI_I0C_WR_MODE Gets/sets SPI transfer mode

Gets/sets bit justification used to transfer SP

SPI_IOC_RD_LSB_FIRST, SPI_IOC_WR_LSB_FIRST
- - - - - - - | words.

SPI_IOC_RD_BITS _PER_WORD, SPI_IOC_WR_BITS | Gets/sets the number of bits in each SPI
_PER_WORD transfer word.

SPI_IOC_RD_MAX_SPEED_HZ, SPI_IOC_WR_MAX_ | Gets/sets the maximum SPI transfer speed
SPEED_HZ in Hz.

Supported ioctls commands

The table above shows only the main commands. Additional commands are defined in the framework (see dev-interface APIE]
for a complete list).

For further information contact your local STMicroelectronics sales office. Page 6 of 24

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

‘,_l SPI overview

2.2.2 Kernel space peripheral driver

The kernel space peripheral driver communicates with SPI devices and uses the following SPI core API: [4]

For further information contact your local STMicroelectronics sales office. Page 7 of 24

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

‘,_l SPI overview

3 Configuration

3.1 Kernel configuration

Enable SPI support (SPI framework and STM32 SPI driver) in the kernel configuration through the Linux Menuconfig tool:
Menuconfig or how to configure kernel.

[x] Device Drivers
[x] SPI support
*** SPT Master Controller Drivers ***
[x] STMicroelectronics STM32 SPI controller
***% SPTI Protocol Masters ***
[x] User mode SPI device driver support

This can be done manually in your kernel:

CONFIG_SPI=y
CONFIG_SPI MASTER=y
CONFIG_SPI STM32=y

CONFIG_SPI_SPIDEV=y

Drivers (controller and peripheral) can be compiled as a kernel module (selected by the 'm' kernel configuration file) or directly
into the kernel (aka built-in) (selected by the 'y" kernel configuration file).

considered as critical and must be built into the kernel

® If a slave device is involved in the boot process, the drivers required to support it are

3.2 Device tree configuration

Please refer to SPI device tree configuration.

For further information contact your local STMicroelectronics sales office. Page 8 of 24

https://wiki.st.com

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

‘,_l SPI overview

4 How to use the framework

Detailed information on how to write an SPI slave driver to control an SPI device are available in the Linux kernel documentation
[5]

User-space examples can be found in How to use SPI from Linux userland with spidev.

For further information contact your local STMicroelectronics sales office.

Page 9 of 24

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

"_l SPI overview

5 How to trace and debug the framework
5.1 How to trace
5.1.1 Activating SPI framework debug messages

To get verbose messages from the SPI Framework, activate "Debug support for SPI drivers" in the Linux kernel via menuconfig
Menuconfig or how to configure kernel.

[x] Device Drivers
[x] SPI support
[x] Debug support for SPI drivers

This is done manually in your kernel .config file:

CONFIG SPI=y
CONFIG_SPI DEBUG=y
CONFIG_SPI_MASTER=y

the debug support for SPI drivers (CONFIG_SPI_DEBUG) compiles all the SPI files located in Linux kernel drivers/spi folder
with DEBUG flag.

® Reminder: loglevel needs to be increased to 8 by using either boot arguments or the dmesg -n
8 command through the console

5.1.2 Dynamic trace

A detailed dynamic trace is available in How to use the kernel dynamic debug

Board $> echo "file spi* +p" > /sys/kernel/debug/dynamic_debug/control

This command enables all the traces related to the SPI core and drivers at runtime.
A finer selection can be made by choosing only the files to trace.

® Reminder: loglevel needs to be increased to 8 by using either boot arguments or the dmesg -n
8 command through the console

5.2 How to debug
5.2.1 Detecting SPI configuration
5.21.1 sysfs

When a peripheral is instantiated, the spi-core and the kernel export several files through the sysfs :
® /sys/class/spi_master/spix shows all the instantiated SPI buses, 'X' being the SPI bus number.

For further information contact your local STMicroelectronics sales office. Page 10 of 24

https://wiki.st.com
https://wiki.st.com

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

‘,_l SPI overview

ﬁ X' may not match the SPI internal peripheral index as it depends on device probing
order.

® /sys/bus/spi/devices lists all the instantiated peripherals. For example, the repository named spi0.0 corresponds to the
peripheral connected to SPI bus 0 and chip select 0. Below an example representing the "TPM" device:

® /sys/bus/spildrivers lists all the instantiated drivers. The tpm_tis_spi/ repository is the driver of TPM 2.0. The spidev/
repository is the generic driver of SPI user mode.

/sys/bus/spi/devices/spi0.0/
/

/drivers/tpm_tis spi/spi0.0/
/drivers/spidev/...

/sys/class/spi master/spi0/spi0.0
/spil/
/spi2/

5.2.2 devfs

If the spidev driver is compiled into the kernel, the repository /dev contains all SPI device entries. They are numbered spix.y
where:

® 'X'is the SPI bus number
® 'v'is the chip select index on the bus.

Unlike i2c-dev which allows full access to the 1°C bus, the spidev offers direct access to the SPI device identified by its chip
select signal defined in the device tree node.

Below example shows user mode SPI device on SPI bus 4, chipselect 2.

/dev/spi4d.2

For more information, please refer to the spidev documentation 31,

For further information contact your local STMicroelectronics sales office. Page 11 of 24

https://wiki.st.com

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

SPI overview

6 Source code location

® The SPI framework is available under drivers/spi
® The STM32 SPI driver is available under drivers/spi/spi-stm32.c
® The user API for the SPI bus is available under include/linux/spi/spi.h and SPI dev is include/uapi/linux/spi/spidev.h .

For further information contact your local STMicroelectronics sales office. Page 12 of 24

https://github.com/STMicroelectronics/linux/blob/v5.10-stm32mp/drivers/spi
https://github.com/STMicroelectronics/linux/blob/v5.10-stm32mp/drivers/spi/spi-stm32.c
https://github.com/STMicroelectronics/linux/blob/v5.10-stm32mp/include/linux/spi/spi.h
https://github.com/STMicroelectronics/linux/blob/v5.10-stm32mp/include/uapi/linux/spi/spidev.h

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

SPI overview

7 References

® https://en.wikipedia.org/w/index.php?tittle=Serial_Peripheral_Interface

® https://bootlin.com/doc/training/linux-kernel/

e 3031 Documentation/spi/spidev.rst dev-interface API

® Serial Peripheral Interface (SPI)

® Documentation/spi/spi-summary.rst Linux kernel SPI framework summary

®

Linux™ is a registered trademark of Linus Torvalds.

Serial Peripheral Interface
Board support package
Application programming interface

Device File System (See https://en.wikipedia.org/wiki/Device_file#DEVFS for more details)
bs-flaggedrevsconnector-addstabledatetochapterheadlinesmodifier-laststable-tag-text: 26.11.2020 - 13:10 / bs-flaggedrevsconnector-

Q&%&m@té&apterheadlinesmodifier-stabIerevisiondate-tag-text: 26.11.2020 - 11:31
System File System (See https://en.wikipedia.org/wiki/Sysfs for more details)

Trusted Platform Module

bs-flaggedrevsconnector-addstabledatetochapterheadlinesmodifier-laststable-tag-text: 02.11.2020 - 10:48 / bs-flaggedrevsconnector-

addstabledatetochapterheadlinesmodifier-stablerevisiondate-tag-text: 19.10.2020 - 12:09
revreview-invalid

returnto

bs-flaggedrevsconnector-addstabledatetochapterheadlinesmodifier-laststable-tag-text: 31.03.2021 - 08:47 / bs-flaggedrevsconnector-
savERVIBNMERIgerheadiinesmodifier-stablerevisiondate-tag-text; 26.03.2021 - 08:44

returnto

peRsgRFR pRRANGCtor-addstabledatetochapterheadlinesmodifier-laststable-tag-text: 28.01.2021 - 13:45 / bs-flaggedrevsconnector-

addstabledatetochapterheadlinesmodifier-stablerevisiondate-tag-text: 28.01.2021 - 10:36
returnto

revreview-invalid _ -
bs-flaggedrevsconnector-addstabledatetochapterheadlinesmodifier-laststable-tag-text: 04.01.2021 - 10:24 / bs-flaggedrevsconnector-

pgtidtatiedatetochapterheadlinesmodifier-stablerevisiondate-tag-text: 21.12.2020 - 10:48

revreview-invalid

Péﬁlﬁ,gﬁ%drevsconnector-addstabledatetochapterheadlinesmodifier-IaststabIe-tag-text: 22.02.2021 - 10:10 / bs-flaggedrevsconnector-
addstabledatetochapterheadlinesmodifier-stablerevisiondate-tag-text: 22.02.2021 - 08:34

For further information contact your local STMicroelectronics sales office.

Page 13 of 24

https://en.wikipedia.org/w/index.php?title=Serial_Peripheral_Interface
https://bootlin.com/doc/training/linux-kernel/
https://github.com/STMicroelectronics/linux/blob/v5.10-stm32mp/Documentation/spi/spidev.rst
https://www.kernel.org/doc/html/v5.10/driver-api/spi.html
https://github.com/STMicroelectronics/linux/blob/v5.10-stm32mp/Documentation/spi/spi-summary.rst
https://en.wikipedia.org/wiki/Device_file#DEVFS
https://en.wikipedia.org/wiki/Sysfs
https://wiki.st.com
https://wiki.st.com
https://wiki.st.com
https://wiki.st.com
https://wiki.st.com
https://wiki.st.com

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

‘,_l SPI overview

This article gives basic information about the Linux®SPI framework and STM32 SPI driver installation. It explains how to use
the SPI and more specifically:

® how to activate the SPI interface on a Linux®BSP

® how to access the SPI from kernel space

® how to access the SPI from user space.

While the STM32 SPI controller supports both master and slave modes, the STM32 Linu
x driver currently only supports SPI master mode.

Contents
L FrameEWOIK PUIMDOSE ...ttt et e e e et e s e aa e s e s et s b et b e s s s s e s s e e s eeaeeaeaaaeaaeaaaaaaaaanns 15
B2V £S1 (=10 001V =T Y/ 5 PSPPSR 16
b R @o] g oTo] L= fe [Tod o] 1T o I 16
2.1.1 Board eXterNal SPI EVICESuuuuuuiiiiiiiiiiiiiiiiiee et e et e e e e e e e e e e e s et eeeeeeeeees 16
2.1.2 STM32 SPI internal peripheral CONIOIErcooiiiiiiiiiiiii e 16
2.1.3 SPI-SIMIB2 ettt e et e e et et e e e e e e e et e e e e e a b e e e e e e aaan 17
A Y o oo = PP P PP OPPPPPPRPP 17
B IS P A 0 Lo ot o)T O 17
B2 T GRS o T [PP RPP R OPPPPPPPPP 17
P A Y o]][o7= (o] ISP PP PPPRPPPPPPRPP 17
A o [T 1o 10 o PP EPP TP 17
WA R B Y= gy o F= Lot Y= Vo] o] o= Lo o [P S 17
2.2.2 Kernel space peripheral driVEEeeieiiiiiiieieeeeeeeee e 18
IR @T0] a1 ilo U] =1 1 o] o [PPSR 19
T80 I (=1 g 1= I o) T U= U1 o] o SRS 19
3.2 Device tree CONFIQUIATIONoiiiiiiiiiiiie ettt e et e e e e e e e e e aaaaaaaeaaeens 19
4 HOW 10 USE the fraMEWOIK ..ottt et et et e nnnnnes 20
5 How to trace and debug the frameWOrK ... 21
LT N o 0T (o I 1 =T S PP UPPPPPTR PPN 21
5.1.1 Activating SPI framework debug MEeSSAJEScoevvvviiiiiiiiiie e 21
LT O B) = 0 o1 - o = 21
L0728 = [0 1 (o 1 =1 o U o 21
5.2.1 Detecting SPI CONfIGUIALIONcoiiiiiiiiieeeeiitt ettt e e e e e r e e e e e 21
I B OO PP P PPPR 21
I o [£ PP PP PRPP R TOPPPPRPT 22
(SRS To Bl ot= R oTo o (=N (o ox= 11 o] o N PO PPRPT PP 23
A R (=T 1T [T PRSP PPRPR PP 24

For further information contact your local STMicroelectronics sales office. Page 14 of 24

https://wiki.st.com

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

‘,_l SPI overview

1 Framework purpose

The Linux kernel provides a specific framework for spilt] protocol support. The SPI (serial peripheral interface) is a
synchronous serial communication interface used for short distance communications, mainly in embedded systems.

This interface was created by Motorola and has become a de facto standard. As it is not defined by a consortium such as 1°c,
there are different signal names and signal polarity modes.

SPI devices communicate either in Full duplex, Half duplex, or Simplex (rx/tx) mode using a master-slave architecture with a
single master.

The Linux kernel SPI framework provides a complete support for SPI master (the Linux kernel initiates SPl messaging on the
bus) and more recently for SPI slave (the Linux kernel answers to requests from the bus master).

See [@ for an introduction on the Linux kernel SPI framework.

For further information contact your local STMicroelectronics sales office. Page 15 of 24

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

"_I SPI overview

2 System overview

The user can add many SPI external devices around the microprocessor device, to create a custom board. Each external
device can be accessed through the SPI from the user space or the kernel space.

SPI i
system overview
ST communiy i3
s
Application
User space spidev interface

Kernel space
Slave device
driver #1

spi-core

SPI
driver controller
~ Hardware 0 00—

| l ISF’I bus 1 SPI bus 2

Board Slave device Slave device Slave device
#1 #2 #3

2.1 Component description

2.1.1 Board external SPI devices

Slave devices ‘X' are physical devices (connected to the STM32 microprocessor via an SPI bus) that behave as slaves with
respect to the STM32.

The STM32 is the SPI bus master.

A chip select signal allows selecting independently each slave device.

2.1.2 STM32 SPI internal peripheral controller

The STM32 SPI controller handles any external SPI devices connected to the same bus.

The STM32 microprocessor devices usually embed several instances of the SPI internal peripheral allowing to manage multiple
SPI buses.

For more information about STM32 SPI internal peripherals, please refer to SPI_internal_peripheral#SPI_main_features

For further information contact your local STMicroelectronics sales office. Page 16 of 24

https://wiki.st.com

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

‘,_l SPI overview

213 Spi-stm32

The STM32 SPI controller driver offers an ST SPI internal peripheral abstraction layer to the spi-core.
It defines all the SPI transfer methods to be used by the SPI core base.

2.1.4 spi-core

spi-core is the "brain of the communication™: it instantiates and manages all buses and peripherals.
® As stated by its name, this is the SPI engine. It is also in charge of parsing device tree entries both for adapter and devices.
It implements the standard SPI modes: 0, 1, 2 and 3.

2.1.5 Slave device drivers

This layer represents all the drivers associated to physical peripherals.

2.1.6 spidev

spidev is the interface between the user and the peripheral. This is a kernel driver that offers a unified SPI bus access to the
user space application using this dev-interface API. See API Description for examples.

2.1.7 Application

The application can control all peripherals thanks to the spidev interface.

2.2 API description

221 User space application

The user space application uses a kernel driver (spidev) for SPI transfers through the devfs.

Let's take the example of an SPI device connected to bus B with chip select C. The spidev driver provides the following
interfaces:

® /dev/spidevB.C: character special device created by "udev" that is used by the user space application to control and transfer
data to the SPI device.

Supported system calls : open(), close(), read(), write(), ioctl(), llseek(), release().

Constant Description
SPI_IOC_RD_MODE, SPI_I0C_WR_MODE Gets/sets SPI transfer mode

Gets/sets bit justification used to transfer SP

SPI_IOC_RD_LSB_FIRST, SPI_IOC_WR_LSB_FIRST
- - - - - - - | words.

SPI_IOC_RD_BITS _PER_WORD, SPI_IOC_WR_BITS | Gets/sets the number of bits in each SPI
_PER_WORD transfer word.

SPI_IOC_RD_MAX_SPEED_HZ, SPI_IOC_WR_MAX_ | Gets/sets the maximum SPI transfer speed
SPEED_HZ in Hz.

Supported ioctls commands

The table above shows only the main commands. Additional commands are defined in the framework (see dev-interface APIE]
for a complete list).

For further information contact your local STMicroelectronics sales office. Page 17 of 24

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

‘,_l SPI overview

2.2.2 Kernel space peripheral driver

The kernel space peripheral driver communicates with SPI devices and uses the following SPI core API: [4]

For further information contact your local STMicroelectronics sales office. Page 18 of 24

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

‘,_l SPI overview

3 Configuration

3.1 Kernel configuration

Enable SPI support (SPI framework and STM32 SPI driver) in the kernel configuration through the Linux Menuconfig tool:
Menuconfig or how to configure kernel.

[x] Device Drivers
[x] SPI support
*** SPT Master Controller Drivers ***
[x] STMicroelectronics STM32 SPI controller
***% SPTI Protocol Masters ***
[x] User mode SPI device driver support

This can be done manually in your kernel:

CONFIG_SPI=y
CONFIG_SPI MASTER=y
CONFIG_SPI STM32=y

CONFIG_SPI_SPIDEV=y

Drivers (controller and peripheral) can be compiled as a kernel module (selected by the 'm' kernel configuration file) or directly
into the kernel (aka built-in) (selected by the 'y" kernel configuration file).

considered as critical and must be built into the kernel

® If a slave device is involved in the boot process, the drivers required to support it are

3.2 Device tree configuration

Please refer to SPI device tree configuration.

For further information contact your local STMicroelectronics sales office. Page 19 of 24

https://wiki.st.com

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

‘,_l SPI overview

4 How to use the framework

Detailed information on how to write an SPI slave driver to control an SPI device are available in the Linux kernel documentation
[5]

User-space examples can be found in How to use SPI from Linux userland with spidev.

For further information contact your local STMicroelectronics sales office.

Page 20 of 24

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

"_l SPI overview

5 How to trace and debug the framework
5.1 How to trace
5.1.1 Activating SPI framework debug messages

To get verbose messages from the SPI Framework, activate "Debug support for SPI drivers" in the Linux kernel via menuconfig
Menuconfig or how to configure kernel.

[x] Device Drivers
[x] SPI support
[x] Debug support for SPI drivers

This is done manually in your kernel .config file:

CONFIG SPI=y
CONFIG_SPI DEBUG=y
CONFIG_SPI_MASTER=y

the debug support for SPI drivers (CONFIG_SPI_DEBUG) compiles all the SPI files located in Linux kernel drivers/spi folder
with DEBUG flag.

® Reminder: loglevel needs to be increased to 8 by using either boot arguments or the dmesg -n
8 command through the console

5.1.2 Dynamic trace

A detailed dynamic trace is available in How to use the kernel dynamic debug

Board $> echo "file spi* +p" > /sys/kernel/debug/dynamic_debug/control

This command enables all the traces related to the SPI core and drivers at runtime.
A finer selection can be made by choosing only the files to trace.

® Reminder: loglevel needs to be increased to 8 by using either boot arguments or the dmesg -n
8 command through the console

5.2 How to debug
5.2.1 Detecting SPI configuration
5.21.1 sysfs

When a peripheral is instantiated, the spi-core and the kernel export several files through the sysfs :
® /sys/class/spi_master/spix shows all the instantiated SPI buses, 'X' being the SPI bus number.

For further information contact your local STMicroelectronics sales office. Page 21 of 24

https://wiki.st.com
https://wiki.st.com

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

‘,_l SPI overview

ﬁ X' may not match the SPI internal peripheral index as it depends on device probing
order.

® /sys/bus/spi/devices lists all the instantiated peripherals. For example, the repository named spi0.0 corresponds to the
peripheral connected to SPI bus 0 and chip select 0. Below an example representing the "TPM" device:

® /sys/bus/spildrivers lists all the instantiated drivers. The tpm_tis_spi/ repository is the driver of TPM 2.0. The spidev/
repository is the generic driver of SPI user mode.

/sys/bus/spi/devices/spi0.0/
/

/drivers/tpm_tis spi/spi0.0/
/drivers/spidev/...

/sys/class/spi master/spi0/spi0.0
/spil/
/spi2/

5.2.2 devfs

If the spidev driver is compiled into the kernel, the repository /dev contains all SPI device entries. They are numbered spix.y
where:

® 'X'is the SPI bus number
® 'v'is the chip select index on the bus.

Unlike i2c-dev which allows full access to the 1°C bus, the spidev offers direct access to the SPI device identified by its chip
select signal defined in the device tree node.

Below example shows user mode SPI device on SPI bus 4, chipselect 2.

/dev/spi4d.2

For more information, please refer to the spidev documentation 31,

For further information contact your local STMicroelectronics sales office. Page 22 of 24

https://wiki.st.com

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

SPI overview

6 Source code location

® The SPI framework is available under drivers/spi
® The STM32 SPI driver is available under drivers/spi/spi-stm32.c
® The user API for the SPI bus is available under include/linux/spi/spi.h and SPI dev is include/uapi/linux/spi/spidev.h .

For further information contact your local STMicroelectronics sales office. Page 23 of 24

https://github.com/STMicroelectronics/linux/blob/v5.10-stm32mp/drivers/spi
https://github.com/STMicroelectronics/linux/blob/v5.10-stm32mp/drivers/spi/spi-stm32.c
https://github.com/STMicroelectronics/linux/blob/v5.10-stm32mp/include/linux/spi/spi.h
https://github.com/STMicroelectronics/linux/blob/v5.10-stm32mp/include/uapi/linux/spi/spidev.h

ST Restriced — Subject to Non-Disclosure Agreement — Do not copy

SPI overview

7 References

® https://en.wikipedia.org/w/index.php?tittle=Serial_Peripheral_Interface

® https://bootlin.com/doc/training/linux-kernel/

e 3031 Documentation/spi/spidev.rst dev-interface API

® Serial Peripheral Interface (SPI)

® Documentation/spi/spi-summary.rst Linux kernel SPI framework summary

Linux®

is a registered trademark of Linus Torvalds.

Serial Peripheral Interface

Board support package

Application programming interface

Device File System (See https://en.wikipedia.org/wiki/Device_file#DEVFS for more details)
also known as

System File System (See https://en.wikipedia.org/wiki/Sysfs for more details)

Trusted Platform Module

For further information contact your local STMicroelectronics sales office.

Page 24 of 24

https://en.wikipedia.org/w/index.php?title=Serial_Peripheral_Interface
https://bootlin.com/doc/training/linux-kernel/
https://github.com/STMicroelectronics/linux/blob/v5.10-stm32mp/Documentation/spi/spidev.rst
https://www.kernel.org/doc/html/v5.10/driver-api/spi.html
https://github.com/STMicroelectronics/linux/blob/v5.10-stm32mp/Documentation/spi/spi-summary.rst
https://en.wikipedia.org/wiki/Device_file#DEVFS
https://en.wikipedia.org/wiki/Sysfs

	SPI overview
	1 Framework purpose
	2 System overview
	2.1 Component description
	2.1.1 Board external SPI devices
	2.1.2 STM32 SPI internal peripheral controller
	2.1.3 spi-stm32
	2.1.4 spi-core
	2.1.5 Slave device drivers
	2.1.6 spidev
	2.1.7 Application

	2.2 API description
	2.2.1 User space application
	2.2.2 Kernel space peripheral driver

	3 Configuration
	3.1 Kernel configuration
	3.2 Device tree configuration

	4 How to use the framework
	5 How to trace and debug the framework
	5.1 How to trace
	5.1.1 Activating SPI framework debug messages
	5.1.2 Dynamic trace

	5.2 How to debug
	5.2.1 Detecting SPI configuration
	5.2.1.1 sysfs

	5.2.2 devfs

	6 Source code location
	7 References

	How to use SPI from Linux userland with spidev
	How to use the kernel dynamic debug
	Menuconfig or how to configure kernel
	SPI device tree configuration
	SPI internal peripheral
	SPI overview
	1 Framework purpose
	2 System overview
	2.1 Component description
	2.1.1 Board external SPI devices
	2.1.2 STM32 SPI internal peripheral controller
	2.1.3 spi-stm32
	2.1.4 spi-core
	2.1.5 Slave device drivers
	2.1.6 spidev
	2.1.7 Application

	2.2 API description
	2.2.1 User space application
	2.2.2 Kernel space peripheral driver

	3 Configuration
	3.1 Kernel configuration
	3.2 Device tree configuration

	4 How to use the framework
	5 How to trace and debug the framework
	5.1 How to trace
	5.1.1 Activating SPI framework debug messages
	5.1.2 Dynamic trace

	5.2 How to debug
	5.2.1 Detecting SPI configuration
	5.2.1.1 sysfs

	5.2.2 devfs

	6 Source code location
	7 References

