NVIC internal peripheral
Stable: 11.02.2019 - 11:21 / Revision: 18.01.2019 - 16:04
Template:ArticleMainWriter
Template:ArticleApprovedVersion
Contents
1 Article purpose
The purpose of this article is to:
- briefly introduce the NVIC and its main features
- indicate the level of security supported by this hardware block
- explain how the NVIC can be configured.
2 Peripheral overview
The NVIC is the Arm®Cortex®-M4 interrupt controller. As a result, it cannot be accessed by the Arm Cortex-A7 core.
2.1 Features
Refer to STM32MP15 reference manuals for the complete list of features, and to the software components, introduced below, to see which features are implemented.
2.2 Security support
The NVIC is a non-secure peripheral.
3 Peripheral usage and associated software
3.1 Boot time
The NVIC can be configured through the STM32Cube. Refer to the STM32MP15 interrupts article for more information on the interrupt configuration strategy.
3.2 Runtime
3.2.1 Overview
The NVIC can be allocated only to the Arm Cortex-M4 core to be controlled in the STM32Cube by the NVIC HAL driver.
3.2.2 Software frameworks
Internal peripherals software table template
| Core/Interrupts | NVIC | | | STM32Cube NVIC driver | |- |}
3.2.3 Peripheral configuration
The configuration is applied by the firmware running in the context to which the peripheral is assigned. The configuration can be done alone via the STM32CubeMX tool for all internal peripherals, and then manually completed (particularly for external peripherals), according to the information given in the corresponding software framework article.
3.2.4 Peripheral assignment
Internal peripherals assignment table template
| rowspan="1" | Core/Interrupts | rowspan="1" | NVIC | NVIC | | | ✓ | |-
|}
4 How to go further
Victor P. Nelson's training [1] provides detailed information on the NVIC behavior and implementation in STM32F4 microcontrollers, that can easily be transposed to the STM32MP15 Cortex-M4 based coprocessor.
5 References
- ↑ http://www.eng.auburn.edu/~nelson/courses/elec5260_6260/slides/ARM%20STM32F407%20Interrupts.pdfARM and STM32F4xx Operating Modes & Interrupt Handling