
ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

How to optimize the boot time for Android

How to optimize the boot time for Android

Stable: 15.04.2021 - 15:55 / Revision: 15.04.2021 - 15:51

How to optimize the boot time for Android – 23.10.2021
For further information contact your local STMicroelectronics sales office.

Stable: 15.04.2021 - 15:55 / Revision: 15.04.2021 - 15:51

https://wiki.st.com

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

How to optimize the boot time for Android

Page of 2 9For further information contact your local STMicroelectronics sales office.

Stable: 15.04.2021 - 15:55 / Revision: 15.04.2021 - 15:51

A of this page, on , was based off this revision.quality version approved 15 April 2021

The purpose of this document is to provide information on how to measure and improve the boot time of a typical STM32MP15
distribution for Android™. This article does not provide an exhaustive list of possible optimizations since those that are
considered insufficiently reliable for industrial use are intentionally omitted.

Contents
 1 Overview .. 3

 1.1 BSP stage ... 3
 1.2 Android stage .. 3

 2 Measuring the boot time ... 5
 2.1 Using a serial console ... 5
 2.2 Using ATRACE .. 6

 3 Optimizing boot time ... 8
 3.1 BSP stage ... 8
 3.2 Android stage .. 8
 3.3 References .. 8

Stable: 15.04.2021 - 15:55 / Revision: 15.04.2021 - 15:51

https://wiki.st.com
https://wiki.st.com/stm32mpu/index.php?title=How_to_optimize_the_boot_time_for_Android&stableid=78113
https://wiki.st.com/stm32mpu/index.php?title=Special:Log&type=review&page=How_to_optimize_the_boot_time_for_Android

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

How to optimize the boot time for Android

Page of 3 9For further information contact your local STMicroelectronics sales office.

Overview

 stageBSP
On a typical STM32MP1 system, the first stages of the are performed in order by the code, , Linux boot process ROM TF-A U-

 and the kernel. All these components, except for the code, can be modified and thus configured to start more Boot Linux ROM
quickly (please refer to page to get some recommendations).How to optimize the boot time

The procedure is the same for all of them: the features that are not required at boot time must be activated (or disabled) after
system boot, while the features that improve the boot time must be enabled.

Android stage
The second stage of the boot process is performed by the the Android™ init.

The main tasks executed as the
following:

initialize the process
mount kernel file

system (, , procfs sysfs
selinuxfs, tmpfs...)

mount logical read-only
partitions (incl. rootfs) if any
(system, vendor, product...)

load SELinux policy
load persisted

properties
initialize based on .rc files

parse initialized .rc files
start daemons

(ueventd, apexd, healthd,
ashmed, lmkd, installd,
statsd, usbd, storaged,
wificond...)

start media processes
(audioserver,
cameraserver, media,
mediaextractor, media.
swcodec, mediadrm,
mediametrics...)

start debug processes
(console, traced,
traced_probes...)

start other processes (keystore, gatekeeperd, surfaceflinger, tombstoned, update_engine...)
start layer (boot, keystore, audio, camera, allocator, configstore, dumpstate, light, memtrack oemlock, thermal, HAL

usb, wifi...)
load required kernel modules (.ko files)

1

1.1

1.2

https://wiki.st.com/stm32mpu/wiki/Boot_chain_overview
https://wiki.st.com/stm32mpu/wiki/How_to_optimize_the_boot_time
https://wiki.st.com/stm32mpu/wiki/File:AndroidInit.png

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

How to optimize the boot time for Android

Page of 4 9For further information contact your local STMicroelectronics sales office.

mount userdata partition
start Virtual Machine
start Zygote (incl. resources and classes preload)
start Bootanim
start Services
parse Packages (.apk files) and start Activities

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

How to optimize the boot time for Android

Page of 5 9For further information contact your local STMicroelectronics sales office.

Measuring the boot time

Before optimizing the performance of any piece of software, the time duration of each part must be considered so that the effort
can be effectively focused.

Using a serial console
One of the easiest way to measure the boot time of a system is to observe the traces emitted on a serial console. This Linux
can be achieved by using a timing software such as the following script based on and :measure-timing.sh microcom p2f

#!/bin/bash

echo 'Waiting for board reset...'

p2f-wait 'NOTICE: :'CPU
t0=$(</proc/uptime)

p2f-wait ' 20'U-Boot
t1=$(</proc/uptime)

p2f-wait 'Starting kernel ...'
t2=$(</proc/uptime)

p2f-wait 'init process'
t3=$(</proc/uptime)

p2f-wait 'init second stage started!'
t4=$(</proc/uptime)

p2f-wait 'BootAnalyze: boot completed'
t5=$(</proc/uptime)

t0=$(echo "$t0" | awk '{print $1}')
t1=$(echo "$t1" | awk '{print $1}')
t2=$(echo "$t2" | awk '{print $1}')
t3=$(echo "$t3" | awk '{print $1}')
t4=$(echo "$t4" | awk '{print $1}')
t5=$(echo "$t5" | awk '{print $1}')

echo ''
echo ''
echo 'Timing results:'
echo " : $(echo "scale=2; $t1 - $t0" | bc)s"FSBL
echo " : $(echo "scale=2; $t2 - $t1" | bc)s"SSBL
echo " : $(echo "scale=2; $t3 - $t2" | bc)s"Linux
echo "Init first stage end: $(echo "scale=2; $t4 - $t3" | bc)s"
echo "Boot complete: $(echo "scale=2; $t5 - $t0" | bc)s"

prerequisites:
insure that the log level has been set at least to "8" by modifying device/stm/< >/< >STM32Series BoardId

/BoardConfig.mk

2

2.1

https://git.pengutronix.de/cgit/tools/microcom
http://p2f.tuxfamily.org

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

How to optimize the boot time for Android

Page of 6 9For further information contact your local STMicroelectronics sales office.

BOARD_KERNEL_CMDLINE += loglevel=8

insure that the different messages expected are available on the boot trace. To do this add the required messages by
modifying (example with latest message waited by the script)device/stm/< >/< >/init.stm.rcSTM32Series BoardId

on property:sys.boot_completed=1
 write /dev/kmsg "BootAnalyze: boot completed"

Then execute:

 microcom -p /dev/ttyACM0 | bash measure-timing.shPC $>

Using ATRACE

The different actions performed during boot phase can be traced using atrace based on ftrace. Here the objective is not to [1]

determine the entire boot time but some subparts, considering that the tracing itself has an impact.

First, enable tracing during the boot phase
add ftrace configuration in the kernel command line by modifying device/stm/< >/< >STM32Series BoardId

/BoardConfig.mk

BOARD_KERNEL_CMDLINE +=trace_buf_size=64M
BOARD_KERNEL_CMDLINE +=trace_event=sched_process_exit,sched_switch,sched_process_free,
task_newtask,task_rename

enable atrace flags by modifying device/stm/< >/< >/device.mkSTM32Series BoardId

PRODUCT_PROPERTY_OVERRIDES += \
 debug.atrace.tags.enableflags=802922 \
 persist.traced.enable=0

remove atrace disabling during initialization by modifying frameworks/native/cmds/atrace/atrace.rc

 write /sys/kernel/debug/tracing/tracing_on 1
 write /sys/kernel/tracing/tracing_on 1

disable atrace as soon as the boot has completed by modifying device/stm/< >/< >/init.stm.STM32Series BoardId
rc

on property:sys.boot_completed=1
 write /d/tracing/tracing_on 0
 write /d/tracing/events/ext4/enable 0
 write /d/tracing/events/f2fs/enable 0
 write /d/tracing/events/block/enable 0

2.2

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

How to optimize the boot time for Android

Page of 7 9For further information contact your local STMicroelectronics sales office.

Then rebuild the distribution and flash again the device (see).How to build STM32MPU distribution for Android

You can restart the device and get back the trace:

PC $> adb shell cat /d/tracing/trace > boot_trace

The boot_trace file can be open using Perfetto tool (see for more details).Perfetto

https://wiki.st.com/stm32mpu/wiki/How_to_build_STM32MPU_distribution_for_Android
https://wiki.st.com/stm32mpu/wiki/Perfetto

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

How to optimize the boot time for Android

Page of 8 9For further information contact your local STMicroelectronics sales office.

Optimizing boot time

 stageBSP
Refer to for information on how to optimize the first stage.How to optimize the boot time

Android stage

First refer to the Android™ source page dedicated to the boot time .[2]

Since I/O performance has an important impact on the boot time, it is key to select an efficient storage solution.

To go further for non-certified devices, patch the Android frameworks.

ZygoteInit phase

Unnecessary preloaded classes can be removed (refer to the list available in frameworks/base/config/preloaded-
).classes

Take care that removing a class that is required later can impact negatively the boot time.

SystemServer phase

Unnecessary service started by the system server can be removed (refer to the list available in frameworks/base/services
)./java/com/android/server/SystemServer.java

Take care that a removed service can no more be accessed in the frameworks nor in your applications. It is recommended to
patch all the calls in the frameworks to , considering that a null pointer is getSystemService(Context.<REMOVED_SERVICE>)
returned if the service does not exist.

It is also recommended to limit the number of the application packages (.apk) required (that is parsed during boot phase).

References
 https://source.android.com/devices/tech/debug/ftrace
 https://source.android.com/devices/tech/perf/boot-times

Board support package

3

3.1

3.2

3.3

https://wiki.st.com/stm32mpu/wiki/How_to_optimize_the_boot_time
https://wiki.st.com/stm32mpu/wiki/File:ZygoteInitAtrace.PNG
https://wiki.st.com/stm32mpu/wiki/File:SystemServerAtrace.PNG
https://source.android.com/devices/tech/debug/ftrace
https://source.android.com/devices/tech/perf/boot-times

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

How to optimize the boot time for Android

Page of 9 9For further information contact your local STMicroelectronics sales office.

Linux is a registered trademark of Linus Torvalds.®

Read Only Memory

Trusted Firmware for Arm Cortex -A® ®

Das U-Boot -- the Universal Boot Loader (see)U-Boot_overview

Process File System (See for more details)https://en.wikipedia.org/wiki/Procfs

System File System (See for more details)https://en.wikipedia.org/wiki/Sysfs

Hardware Abstraction Layer

Central processing unit

First Stage Boot Loader

Second Stage Boot Loader

stm32mp1

eval,disco (Generic term used, to complete configuration modules paths depending on used board)

https://wiki.st.com/stm32mpu/wiki/U-Boot_overview
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Sysfs

	How to optimize the boot time for Android
	1 Overview
	1.1 BSP stage
	1.2 Android stage

	2 Measuring the boot time
	2.1 Using a serial console
	2.2 Using ATRACE

	3 Optimizing boot time
	3.1 BSP stage
	3.2 Android stage
	3.3 References

