Difference between revisions of "Reset device tree configuration"

[quality revision] [quality revision]
m
m (How to configure the DT using STM32CubeMX)
 
Template:ArticleMainWriter Template:ArticleApprovedVersion

1 Article purpose[edit]

This article explains how to configure the RCC internal peripheral when it is assigned to the Linux® OS. In that case, it is controlled by the Reset framework.

The configuration is performed using the device tree mechanism that provides a hardware description of the RCC peripheral used by the reset-stm32mp1 Linux driver and by the Reset framework.

When RCC TZEN or MCKPROT security hardening is enabled, Linux RCC reset driver is not the only reset controller provider. The SCMI server embedded in the secure firmware is also a reset controller provider through Linux SCMI reset device driver. See more information in section STM32MP15 SCMI reset domains below.

2 Reset controller providers[edit]

There are 2 reset controller providers in STM32MP1. Each are represented by node(s) in the device tree description. Their node must define a value for specifier #reset-cells.

  • STM32MP1 RCC reset controllers, most of the system reset controllers actually.
  • SCMI reset domains are reset controllers registered by the SCMI drivers.
    The STM32MP1 uses SCMI reset domains to abstract RCC secure reset controllers.

This article describes the device configuration where RCC TZEN security hardening is enabled. Specificities to explore when RCC TZEN hardening is disabled are discussed in non-secure RCC configuration article.

3 DT bindings documentation[edit]

The Reset device tree bindings are composed of:

  • generic DT bindings[1] used by the Reset framework.
  • vendor Reset DT bindings[2] used by the reset-stm32mp1 driver: this binding document explains how to write device tree files for reset.
  • generic SCMI DT bindings[3] used by the SCMI reset domain protocol support.

4 DT configuration[edit]

34.1 DT configuration (STM32 level)[edit]

The device tree description of the STM32 SoC includes reset controllers exposed by RCC reset controller device driver and SCMI reset domain device driver.

4.1.1 STM32MP1 RCC Reset node[edit]

The device tree defines the RCC reset controllers device as a node with compatible = "st,stm32mp1-rcc" or "st,stm32mp1-rcc-secure" node.

  • "st,stm32mp1-rcc-secure" complies with configuration where RCC TZEN secure hardening is
same node of
  • enabled.
  • "st,stm32mp1-rcc" complies with configuration where RCC TZEN secure hardening is disabled.

The node defines #reset-cells = <1>;.
STM32MP1 RCC Reset controllers are identified by a single 32-bit ID. Valid values for the IDs are defined in STM32MP1 Reset DT bindings[4].

The STM32MP1 RCC Reset node is the same node as the STM32MP1 RCC Clock (they share same hardware IP) and is located in the stm32mp157cstm32mp151.dtsi[3]5], hence one can also see #clock-cells = <1>; in the node. See the Device tree for further explanation.

3.1.1 STM32MP1 Reset node[edit]

We need to specify the number of cells in a reset specifier.
For the STM32MP1, reset driver request only 1 cell. This is configured by setting the property 'reset-cells' of the rcc device tree node to 1.

rcc
 rcc: rcc@50000000 {
 	compatible = "st,stm32mp1-rcc-secure", "st,stm32mp1-rcc", "syscon";
 	#clock-cells = <1>;
 	#reset-cells = <1>;
 	reg = <0x50000000 0x1000>;
 	...
 };
Warning.png This device tree part is related to STM32MP1 microprocessors. It must be kept as-is, without being modified by the end-user.
3

4.1.2 SCMI Reset Domain node[edit]

The device tree defines SCMI reset domains using compatible = "arm,scmi" nodes with subnodes specifying protocol@16 (reg = <0x16>) together with specifier '#reset-cells = 1. The reset consumer uses node phandle (scmi0_reset in example below) together with a reset ID based macros RST_SCMIx_* defined in STM32MP1 Reset DT bindings[6] to identify a SCMI reset domain related to an agent interface.


 scmi-0 {
 	compatible = "arm,scmi";
 	#address-cells = <1>;
 	#size-cells = <0>;

 	scmi0_reset: protocol@16 {
		reg = <0x16>;
		#reset-cells = <1>;
	};
 };


Warning.png This device tree part is related to STM32MP1 microprocessors. It must be kept as-is, without being modified by the end-user.

4.2 DT configuration (board level)[edit]

If a Linux driver needs a reset signal, it should be declared in its DT node as shown below:
resets = <phandle> : List of phandle and reset specifier pairs, one pair for each reset signal that affects the device, or that the device manages.

  • Example:

 i2c2: i2c@40013000 {
 	compatible = "st,stm32f7-i2c";
 	reg = <0x40013000 0x400>;
 	interrupt-namesclocks = "event", "error", "wakeup";
	interrupts-extended<&rcc I2C2_K>;
 	resets = <&intcrcc GICI2C2_SPIR>;
33 IRQ_TYPE_LEVEL_HIGH>, 			      <&intc GIC_SPI 34 IRQ_TYPE_LEVEL_HIGH>,
			      <&exti 22 1>;
...
 };

 i2c4: i2c@5c002000 {
 	compatible = "st,stm32f7-i2c";
 	reg = <0x5c002000 0x400>;
 	clocks = <&rccscmi0_clk I2C2CK_K>SCMI0_I2C4>;
 	resets = <&rccscmi0_reset I2C2RST_R>SCMI0_I2C4>;
        ...
 };

4 5 How to configure the DT using STM32CubeMX[edit]

The STM32CubeMX tool can be used to configure the STM32MPU STM32MP1 device and get the corresponding platform configuration device tree files.
The STM32CubeMX may not support all the properties described in the above DT bindings documentation paragraph. If so, the tool inserts user sections in the generated device tree. These sections can then be edited to add some properties, which are preserved from one generation to another. Refer to STM32CubeMX user manual for further information.

5 6 References[edit]

Please refer to the following links for additional information:


<noinclude>

{{ArticleBasedOnModel | [[Contributors:Peripheral or framework device tree configuration model]]}}
{{ArticleMainWriter | OlivierB}}
{{ArticleApprovedVersion | GabrielF | OlivierB | No previous approved version | Sagep - 22Jan'19 - 10341 | 29Jan'19}}
[[Category:Device tree configuration]]
[[Category:Reset]] </noinclude>

== Article purpose ==

This article explains how to configure the [[RCC internal peripheral|'''RCC''' internal peripheral]] when it is assigned to the Linux<sup>&reg;</sup> OS. In that case, it is controlled by the [[Reset_overview|Reset framework]].

The configuration is performed using the [[Device tree|device tree]] mechanism that provides a hardware description of the RCC peripheral used by the reset-stm32mp1 Linux driver and by  the Reset framework.
== When [[RCC internal peripheral|RCC]] TZEN or MCKPROT security hardening is enabled, Linux RCC reset driver is not the only reset controller provider. The SCMI server
embedded in the secure firmware is also a reset controller provider through
Linux SCMI reset device driver. See more
information in section [[#STM32MP15_SCMI_reset_domains|STM32MP15 SCMI reset domains]]
below.

== Reset controller providers ==

There are 2 reset controller providers in STM32MP1. Each are represented by node(s) in the
device tree description. Their node must define a value for specifier ''#reset-cells''.

* STM32MP1 [[RCC_internal_peripheral|RCC]] reset controllers, most of the system reset controllers actually.
* SCMI reset domains are reset controllers registered by the SCMI drivers.  <br />The STM32MP1 uses SCMI reset domains to abstract RCC secure reset controllers.

This article describes the device configuration where [[RCC_internal_peripheral#Security_support|RCC]]
TZEN security hardening is enabled. Specificities to explore when [[RCC_internal_peripheral#Security_support|RCC]]
TZEN hardening is disabled are discussed in [[Non_secure_RCC_configuration|non-secure RCC configuration]] article.

== DT bindings documentation ==

The Reset device tree bindings are composed of:

*generic DT bindings<ref>{{CodeSource | Linux kernel | Documentation/devicetree/bindings/reset/reset.txt | Documentation/devicetree/bindings/reset/reset.txt}}, Reset device tree bindings</ref> used by the Reset framework.

*vendor Reset DT bindings<ref>{{CodeSource | Linux kernel | Documentation/devicetree/bindings/reset/st%2Cstm32mp1-rcc.txt | Documentation/devicetree/bindings/reset/st%2Cstm32mp1-rcc.txt}}, STM32MP1 Reset device tree bindings</ref> used by the reset-stm32mp1 driver: this binding document explains how to write device tree files for reset.
*generic SCMI DT bindings<ref>{{CodeSource | Linux kernel | Documentation/devicetree/bindings/arm/arm,scmi.txt}}SCMI DT bindings</ref> used by the SCMI reset domain protocol support.
== DT configuration ==

=== DT configuration (STM32 level) ===

The STM32MP1 Reset node is same node of device tree description of the STM32 SoC includes reset controllers
exposed by RCC reset controller device driver and SCMI reset domain device
driver.
==== STM32MP1 RCC Reset node ====

The device tree defines the RCC reset controllers device as a node with ''compatible = "st,stm32mp1-rcc"'' or ''"st,stm32mp1-rcc-secure"'' node.<br/>

* ''"st,stm32mp1-rcc-secure"'' complies with configuration where [[RCC_internal_peripheral#Security_support|RCC]] TZEN secure hardening is enabled.
* ''"st,stm32mp1-rcc"'' complies with configuration where [[RCC_internal_peripheral#Security_support|RCC]] TZEN secure hardening is disabled.

The node defines ''#reset-cells = <1>;''.<br/>

STM32MP1 RCC Reset controllers are identified by a single 32-bit ID. Valid
values for the IDs are defined in STM32MP1 Reset DT bindings<ref>{{CodeSource | Linux kernel | Documentation/devicetree/bindings/reset/st%2Cstm32mp1-rcc.txt | Documentation/devicetree/bindings/reset/st%2Cstm32mp1-rcc.txt}}STM32MP1 Reset DT bindings</ref>.<br/>


The STM32MP1 RCC Reset node is the same node as the STM32MP1 RCC Clock (they share same hardware IP) and is located in the ''stm32mp157cstm32mp151.dtsi''<ref name="stm32mp157cstm32mp151.dtsi">{{CodeSource | Linux kernel | arch/arm/boot/dts/stm32mp157cstm32mp151.dtsi | stm32mp157cstm32mp151.dtsi}} STM32MP157CSTM32MP151 device tree file</ref>, hence one can also see ''#clock-cells = <1>;'' in the node.
See the [[Device tree]] for further explanation.
==== STM32MP1 Reset node ====
We need to specify the number of cells in a reset specifier. <br/>

For the STM32MP1, reset driver request only 1 cell. This is configured by setting the property 'reset-cells' of the rcc device tree node to 1.

 rcc: rcc@50000000 {
  	compatible = "st,stm32mp1-rcc", "syscon";
 	#clock-cells = <1>;
 	'''#reset-cells = <1>;'''
 	reg = <0x50000000 0x1000>;
 	...
 };
<pre>

 rcc: rcc@50000000 {
	compatible = "st,stm32mp1-rcc-secure", "st,stm32mp1-rcc", "syscon";
 	#clock-cells = <1>;
 	#reset-cells = <1>;
 	reg = <0x50000000 0x1000>;
 	...
 };</pre>


{{Warning|This device tree part is related to STM32MP1 microprocessors. It must be kept as-is, without being modified by the end-user.}}

==== SCMI Reset Domain node ====

The device tree defines SCMI reset domains using ''compatible = "arm,scmi"'' nodes with
subnodes specifying protocol@16 (''reg = <0x16>'') together with specifier
'#reset-cells = 1''. The reset consumer uses node phandle (''scmi0_reset'' in example below) together with a reset ID based macros ''RST_SCMIx_*'' defined in STM32MP1 Reset DT bindings<ref>{{CodeSource | Linux kernel | Documentation/devicetree/bindings/reset/st%2Cstm32mp1-rcc.txt | Documentation/devicetree/bindings/reset/st%2Cstm32mp1-rcc.txt}}STM32MP1 Reset DT bindings</ref> to identify a SCMI reset domain related to an agent interface.
<pre>

 scmi-0 {
 	compatible = "arm,scmi";
 	#address-cells = <1>;
 	#size-cells = <0>;

 	scmi0_reset: protocol@16 {
		reg = <0x16>;
		#reset-cells = <1>;
	};
 };</pre>

{{Warning|This device tree part is related to STM32MP1 microprocessors. It must be kept as-is, without being modified by the end-user.}}

=== DT configuration (board level) ===

If a Linux driver needs a reset signal, it should be declared in its DT node as shown below:<br/>

resets = <phandle> : List of phandle and reset specifier pairs, one pair for each reset signal that affects the device, or that the device manages.

*Example:
 <pre>
i2c2: i2c@40013000 {
 	compatible = "st,stm32f7-i2c";
 	reg = <0x40013000 0x400>;interrupt-names = "event", "error", "wakeup";
 	interrupts-extended = <&intc GIC_SPI 33 IRQ_TYPE_LEVEL_HIGH>,<&intc GIC_SPI 34 IRQ_TYPE_LEVEL_HIGH>,<&exti 22 1>;
 	clocks = <&rcc I2C2_K>;
 	'''resets = <&rcc I2C2_R>;'''
        ...
 };
clocks = <&rcc I2C2_K>;
 	resets = <&rcc I2C2_R>;
        ...
 };

 i2c4: i2c@5c002000 {
 	compatible = "st,stm32f7-i2c";
 	reg = <0x5c002000 0x400>;
 	clocks = <&scmi0_clk CK_SCMI0_I2C4>;
 	resets = <&scmi0_reset RST_SCMI0_I2C4>;
        ...
 };</pre>

==How to configure the DT using STM32CubeMX==
The [[STM32CubeMX]] tool can be used to configure the STM32MPUSTM32MP1 device and get the corresponding [[Device_tree#STM32|platform configuration device tree]] files.<br />

The STM32CubeMX may not support all the properties described in the above [[#DT bindings documentation|DT bindings documentation]] paragraph. If so, the tool inserts '''user sections''' in the generated device tree. These sections can then be edited to add some properties, which are preserved from one generation to another. Refer to [[STM32CubeMX]] user manual for further information.

==References==
Please refer to the following links for additional information:
<references />

<noinclude>

[[Category:Device tree configuration]]
[[Category:Reset]]
{{PublicationRequestId | 16522 | 2020-06-23 | FYI : previous version reviewed by SageP}}
{{ArticleBasedOnModel | Peripheral or framework device tree configuration model}}</noinclude>
(13 intermediate revisions by 6 users not shown)
Line 1: Line 1:
<noinclude>
 
{{ArticleBasedOnModel | [[Contributors:Peripheral or framework device tree configuration model]]}}
 
{{ArticleMainWriter | OlivierB}}
 
{{ArticleApprovedVersion | GabrielF | OlivierB | No previous approved version | Sagep - 22Jan'19 - 10341 | 29Jan'19}}
 
[[Category:Device tree configuration]]
 
[[Category:Reset]]
 
</noinclude>
 
 
 
== Article purpose ==
 
== Article purpose ==
   
Line 12: Line 4:
   
 
The configuration is performed using the [[Device tree|device tree]] mechanism that provides a hardware description of the RCC peripheral used by the reset-stm32mp1 Linux driver and by  the Reset framework.
 
The configuration is performed using the [[Device tree|device tree]] mechanism that provides a hardware description of the RCC peripheral used by the reset-stm32mp1 Linux driver and by  the Reset framework.
  +
  +
When [[RCC internal peripheral|RCC]] TZEN or MCKPROT security hardening is enabled, Linux RCC reset driver is not the only reset controller provider. The SCMI server
  +
embedded in the secure firmware is also a reset controller provider through
  +
Linux SCMI reset device driver. See more
  +
information in section [[#STM32MP15_SCMI_reset_domains|STM32MP15 SCMI reset domains]]
  +
below.
  +
  +
== Reset controller providers ==
  +
  +
There are 2 reset controller providers in STM32MP1. Each are represented by node(s) in the
  +
device tree description. Their node must define a value for specifier ''#reset-cells''.
  +
  +
* STM32MP1 [[RCC_internal_peripheral|RCC]] reset controllers, most of the system reset controllers actually.
  +
* SCMI reset domains are reset controllers registered by the SCMI drivers.  <br />The STM32MP1 uses SCMI reset domains to abstract RCC secure reset controllers.
  +
  +
This article describes the device configuration where [[RCC_internal_peripheral#Security_support|RCC]]
  +
TZEN security hardening is enabled. Specificities to explore when [[RCC_internal_peripheral#Security_support|RCC]]
  +
TZEN hardening is disabled are discussed in [[Non_secure_RCC_configuration|non-secure RCC configuration]] article.
   
 
== DT bindings documentation ==
 
== DT bindings documentation ==
Line 20: Line 30:
   
 
*vendor Reset DT bindings<ref>{{CodeSource | Linux kernel | Documentation/devicetree/bindings/reset/st%2Cstm32mp1-rcc.txt | Documentation/devicetree/bindings/reset/st%2Cstm32mp1-rcc.txt}}, STM32MP1 Reset device tree bindings</ref> used by the reset-stm32mp1 driver: this binding document explains how to write device tree files for reset.
 
*vendor Reset DT bindings<ref>{{CodeSource | Linux kernel | Documentation/devicetree/bindings/reset/st%2Cstm32mp1-rcc.txt | Documentation/devicetree/bindings/reset/st%2Cstm32mp1-rcc.txt}}, STM32MP1 Reset device tree bindings</ref> used by the reset-stm32mp1 driver: this binding document explains how to write device tree files for reset.
  +
  +
*generic SCMI DT bindings<ref>{{CodeSource | Linux kernel | Documentation/devicetree/bindings/arm/arm,scmi.txt}}SCMI DT bindings</ref> used by the SCMI reset domain protocol support.
   
 
== DT configuration ==
 
== DT configuration ==
Line 25: Line 37:
 
=== DT configuration (STM32 level) ===
 
=== DT configuration (STM32 level) ===
   
The STM32MP1 Reset node is same node of Clock (they share same hardware IP) and is located in the ''stm32mp157c.dtsi''<ref name="stm32mp157c.dtsi">{{CodeSource | Linux kernel | arch/arm/boot/dts/stm32mp157c.dtsi | stm32mp157c.dtsi}} STM32MP157C device tree file</ref>. See the [[Device tree]] for further explanation.
+
The device tree description of the STM32 SoC includes reset controllers
  +
exposed by RCC reset controller device driver and SCMI reset domain device
  +
driver.
  +
==== STM32MP1 RCC Reset node ====
   
==== STM32MP1 Reset node ====
+
The device tree defines the RCC reset controllers device as a node with ''compatible = "st,stm32mp1-rcc"'' or ''"st,stm32mp1-rcc-secure"'' node.<br/>
We need to specify the number of cells in a reset specifier. <br/>
+
* ''"st,stm32mp1-rcc-secure"'' complies with configuration where [[RCC_internal_peripheral#Security_support|RCC]] TZEN secure hardening is enabled.
For the STM32MP1, reset driver request only 1 cell. This is configured by setting the property 'reset-cells' of the rcc device tree node to 1.
+
* ''"st,stm32mp1-rcc"'' complies with configuration where [[RCC_internal_peripheral#Security_support|RCC]] TZEN secure hardening is disabled.
   
  +
The node defines ''#reset-cells = <1>;''.<br/>
  +
STM32MP1 RCC Reset controllers are identified by a single 32-bit ID. Valid
  +
values for the IDs are defined in STM32MP1 Reset DT bindings<ref>{{CodeSource | Linux kernel | Documentation/devicetree/bindings/reset/st%2Cstm32mp1-rcc.txt | Documentation/devicetree/bindings/reset/st%2Cstm32mp1-rcc.txt}}STM32MP1 Reset DT bindings</ref>.<br/>
  +
  +
The STM32MP1 RCC Reset node is the same node as the STM32MP1 RCC Clock (they share same hardware IP) and is located in the ''stm32mp151.dtsi''<ref name="stm32mp151.dtsi">{{CodeSource | Linux kernel | arch/arm/boot/dts/stm32mp151.dtsi | stm32mp151.dtsi}} STM32MP151 device tree file</ref>, hence one can also see ''#clock-cells = <1>;'' in the node.
  +
See the [[Device tree]] for further explanation.
  +
  +
<pre>
 
  rcc: rcc@50000000 {
 
  rcc: rcc@50000000 {
  compatible = "st,stm32mp1-rcc", "syscon";
+
compatible = "st,stm32mp1-rcc-secure", "st,stm32mp1-rcc", "syscon";
 
  #clock-cells = <1>;
 
  #clock-cells = <1>;
  '''#reset-cells = <1>;'''
+
  #reset-cells = <1>;
 
  reg = <0x50000000 0x1000>;
 
  reg = <0x50000000 0x1000>;
 
  ...
 
  ...
 
  };
 
  };
  +
</pre>
  +
  +
{{Warning|This device tree part is related to STM32MP1 microprocessors. It must be kept as-is, without being modified by the end-user.}}
  +
  +
==== SCMI Reset Domain node ====
  +
  +
The device tree defines SCMI reset domains using ''compatible = "arm,scmi"'' nodes with
  +
subnodes specifying protocol@16 (''reg = <0x16>'') together with specifier
  +
'#reset-cells = 1''. The reset consumer uses node phandle (''scmi0_reset'' in example below) together with a reset ID based macros ''RST_SCMIx_*'' defined in STM32MP1 Reset DT bindings<ref>{{CodeSource | Linux kernel | Documentation/devicetree/bindings/reset/st%2Cstm32mp1-rcc.txt | Documentation/devicetree/bindings/reset/st%2Cstm32mp1-rcc.txt}}STM32MP1 Reset DT bindings</ref> to identify a SCMI reset domain related to an agent interface.
  +
  +
<pre>
  +
scmi-0 {
  +
compatible = "arm,scmi";
  +
#address-cells = <1>;
  +
#size-cells = <0>;
  +
  +
scmi0_reset: protocol@16 {
  +
reg = <0x16>;
  +
#reset-cells = <1>;
  +
};
  +
};
  +
</pre>
  +
   
 
{{Warning|This device tree part is related to STM32MP1 microprocessors. It must be kept as-is, without being modified by the end-user.}}
 
{{Warning|This device tree part is related to STM32MP1 microprocessors. It must be kept as-is, without being modified by the end-user.}}
Line 48: Line 94:
 
*Example:
 
*Example:
   
  +
<pre>
 
  i2c2: i2c@40013000 {
 
  i2c2: i2c@40013000 {
 
  compatible = "st,stm32f7-i2c";
 
  compatible = "st,stm32f7-i2c";
 
  reg = <0x40013000 0x400>;
 
  reg = <0x40013000 0x400>;
interrupt-names = "event", "error", "wakeup";
 
interrupts-extended = <&intc GIC_SPI 33 IRQ_TYPE_LEVEL_HIGH>,
 
      <&intc GIC_SPI 34 IRQ_TYPE_LEVEL_HIGH>,
 
      <&exti 22 1>;
 
 
  clocks = <&rcc I2C2_K>;
 
  clocks = <&rcc I2C2_K>;
  '''resets = <&rcc I2C2_R>;'''
+
  resets = <&rcc I2C2_R>;
  +
        ...
  +
};
  +
 
  +
i2c4: i2c@5c002000 {
  +
compatible = "st,stm32f7-i2c";
  +
reg = <0x5c002000 0x400>;
  +
clocks = <&scmi0_clk CK_SCMI0_I2C4>;
  +
resets = <&scmi0_reset RST_SCMI0_I2C4>;
 
         ...
 
         ...
 
  };
 
  };
  +
</pre>
   
 
==How to configure the DT using STM32CubeMX==
 
==How to configure the DT using STM32CubeMX==
The [[STM32CubeMX]] tool can be used to configure the STM32MPU device and get the corresponding [[Device_tree#STM32|platform configuration device tree]] files.<br />
+
The [[STM32CubeMX]] tool can be used to configure the STM32MP1 device and get the corresponding [[Device_tree#STM32|platform configuration device tree]] files.<br />
 
The STM32CubeMX may not support all the properties described in the above [[#DT bindings documentation|DT bindings documentation]] paragraph. If so, the tool inserts '''user sections''' in the generated device tree. These sections can then be edited to add some properties, which are preserved from one generation to another. Refer to [[STM32CubeMX]] user manual for further information.
 
The STM32CubeMX may not support all the properties described in the above [[#DT bindings documentation|DT bindings documentation]] paragraph. If so, the tool inserts '''user sections''' in the generated device tree. These sections can then be edited to add some properties, which are preserved from one generation to another. Refer to [[STM32CubeMX]] user manual for further information.
   
Line 68: Line 120:
   
 
<references />
 
<references />
  +
  +
<noinclude>
  +
[[Category:Device tree configuration]]
  +
[[Category:Reset]]
  +
{{PublicationRequestId | 16522 | 2020-06-23 | FYI : previous version reviewed by SageP}}
  +
{{ArticleBasedOnModel | Peripheral or framework device tree configuration model}}
  +
</noinclude>