Difference between revisions of "PWR internal peripheral"

[checked revision] [quality revision]
m
 

1 Article purpose[edit]

The purpose of this article is to:

  • briefly introduce the PWR peripheral and its main features
  • indicate the level of security supported by this hardware block
  • explain how it can be allocated to the three runtime contexts and linked to the corresponding software components
  • explain, when necessary, how to configure the PWR peripheral.

2 Peripheral overview[edit]

The PWR peripheral is used to control the device power supply configuration.

It has 6 input pins (named wakeup pins) which can be programmed to wake the system up from low power. The wakeup pins are listed with WKUP prefix in the STM32MP15 Datasheet.

These pins can be used by the Cortex®-A7 non secure (via Cortex®-A7 secure services) or the Cortex®-M4.

The PWR peripheral provides 2 output hardware lines named PWR_ON and PWR_LP:

  • In STPMIC1 configuration, PWR_ON allows to select the register bank (active or low power). PWR_LP is not used.
  • In the power discrete solution they drive VDDcore which feeds the Cortex®-A7, the Cortex®-M4 and the peripherals. They also control the DDR power supplies (VDD_DDR, VREF_DDR, VTT_DDR).

2.1 Features[edit]

Refer to the STM32MP15 reference manuals for the complete list of features, and to the software components, introduced below, to see which features are implemented.

2.2 Security support[edit]

The PWR is secure aware with the security control managed via RCC TZEN bit.

3 Peripheral usage and associated software[edit]

3.1 Boot time[edit]

The PWR is closely configured together with RCC by all the boot components: the ROM code, the FSBL, the SSBL and up to Linux® kernel. Its configuration is carried by the device tree.

3.2 Runtime[edit]

3.2.1 Overview[edit]

The PWR peripheral is shared at runtime:

  • the Cortex®-A7 secure controls all secure registers (cf. TZEN description above) with PWR OP-TEE driver.

and

and


A concurrent control from each context is possible because the described management is realized via independent registers.

3.2.2 Software frameworks[edit]

Domain Peripheral Software frameworks Comment
Cortex-A7
secure
(OP-TEE)
Cortex-A7
non-secure
(Linux)
Cortex-M4

(STM32Cube)
Power & Thermal PWR OP-TEE PWR driver Linux regulator framework STM32Cube PWR driver

3.2.3 Peripheral configuration[edit]

The configuration is applied by the firmware running in the context to which the peripheral is assigned. The configuration can be done alone via the STM32CubeMX tool for all internal peripherals, and then manually completed (particularly for external peripherals), according to the information given in the corresponding software framework article.

3.2.4 Peripheral assignment[edit]

Internal peripherals

Check boxes illustrate the possible peripheral allocations supported by STM32 MPU Embedded Software:

  • means that the peripheral can be assigned () to the given runtime context.
  • is used for system peripherals that cannot be unchecked because they are statically connected in the device.

Refer to How to assign an internal peripheral to a runtime context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possiblities might be described in STM32MP15 reference manuals.

Domain Peripheral Runtime allocation Comment
Instance Cortex-A7
secure
(OP-TEE)
Cortex-A7
non-secure
(Linux)
Cortex-M4

(STM32Cube)
Power & Thermal PWR PWR

4 How to go further[edit]

The PWR is interfaced with the hardware debug port (HDP) of the STM32MP15. This link offers the flexibility to observe the main PWR state signals on debug pins.

Please refer to STM32MP15 reference manuals for the exact list of signals that can be monitored.

5 References[edit]



==Article purpose==
The purpose of this article is to:
* briefly introduce the PWR peripheral and its main features
* indicate the level of security supported by this hardware block
* explain how it can be allocated to the three runtime contexts and linked to the corresponding software components
* explain, when necessary, how to configure the PWR peripheral.

==Peripheral overview==
The '''PWR''' peripheral is used to control the device power supply configuration.<br />


It has 6 input pins (named wakeup pins) which can be programmed to wake the system up from low power. The wakeup pins are listed with '''WKUP''' prefix in the [[STM32MP15 resources#DS12505|STM32MP15 Datasheet]].

These pins can be used by the Cortex<sup>&reg;</sup>-A7 non secure (via Cortex<sup>&reg;</sup>-A7 secure services) or the Cortex<sup>&reg;</sup>-M4.

The PWR peripheral provides 2 output hardware lines named PWR_ON and PWR_LP:
* In [[PMIC hardware components#STPMIC1|STPMIC1]] configuration, PWR_ON allows to select the register bank (active or low power). PWR_LP is not used.
* In the power discrete solution they drive VDDcore which feeds the Cortex<sup>&reg;</sup>-A7, the Cortex<sup>&reg;</sup>-M4 and the peripherals. They also control the DDR power supplies (VDD_DDR, VREF_DDR, VTT_DDR).

===Features===
Refer to the [[STM32MP15 resources#Reference manuals|STM32MP15 reference manuals]] for the complete list of features, and to the software components, introduced below, to see which features are implemented.

===Security support===
The PWR is '''secure aware''' with the security control managed via [[RCC internal peripheral|RCC]] '''TZEN''' bit.

==Peripheral usage and associated software==
===Boot time===
The PWR is closely configured together with [[RCC internal peripheral|RCC]] by all the [[Boot chains overview|boot components]]: the ROM code, the FSBL, the SSBL and up to Linux<sup>&reg;</sup> kernel. Its configuration is carried by the [[Device tree|device tree]].

===Runtime===
====Overview====
The PWR peripheral is shared at runtime:
* the Cortex<sup>&reg;</sup>-A7 secure controls all secure registers (cf. TZEN description above) with [[OP-TEE overview|PWR OP-TEE driver]].
and
* the Cortex<sup>&reg;</sup>-A7 non-secure mainly controls it via the [[Regulator overview|regulator framework]] and the [[Interrupt overview|interrupt framework]] in Linux 
and
* the Cortex<sup>&reg;</sup>-M4 controls it in STM32Cube with [[STM32CubeMP1 architecture|PWR HAL driver]]<br />

A concurrent control from each context is possible because the described management is realized via independent registers.

====Software frameworks====
{{:Internal_peripherals_software_table_template}}
 | Power & Thermal
 | [[PWR internal peripheral|PWR]]
 | [[OP-TEE_overview|OP-TEE PWR driver]]
 | [[Regulator overview|Linux regulator framework]]
 | [[STM32CubeMP1 architecture|STM32Cube PWR driver]]
 |
 |-
 |}

====Peripheral configuration====
The configuration is applied by the firmware running in the context to which the peripheral is assigned. The configuration can be done alone via the [[STM32CubeMX]] tool for all internal peripherals, and then manually completed (particularly for external peripherals), according to the information given in the corresponding software framework article.

====Peripheral assignment====
{{:Internal_peripherals_assignment_table_template}}<onlyinclude>

 | rowspan="1" | Power & Thermal
 | rowspan="1" | [[PWR internal peripheral|PWR]]
 | PWR
 | <span title="system peripheral" style="font-size:21px"></span>

 | <span title="system peripheral" style="font-size:21px"></span>

 | <span title="system peripheral" style="font-size:21px"></span>

 |
 |-</onlyinclude>

 |}

==How to go further==
The PWR is interfaced with the hardware debug port ([[HDP internal peripheral|HDP]]) of the STM32MP15. This link offers the flexibility to observe the main PWR state signals on debug pins.

Please refer to [[STM32MP15 resources#Reference manuals|STM32MP15 reference manuals]] for the exact list of signals that can be monitored.

==References==<references/>

<noinclude>

[[Category:Power and Thermal peripherals]]
{{ArticleBasedOnModel | Internal peripheral article model}}
{{PublicationRequestId | 9334 | 2018-10-31| AlainF}}</noinclude>
Line 32: Line 32:
 
* the Cortex<sup>&reg;</sup>-A7 secure controls all secure registers (cf. TZEN description above) with [[OP-TEE overview|PWR OP-TEE driver]].
 
* the Cortex<sup>&reg;</sup>-A7 secure controls all secure registers (cf. TZEN description above) with [[OP-TEE overview|PWR OP-TEE driver]].
 
and
 
and
* the Cortex<sup>&reg;</sup>-A7 non-secure mainly controls it via the [[Regulator overview|regulator framework]] in Linux  
+
* the Cortex<sup>&reg;</sup>-A7 non-secure mainly controls it via the [[Regulator overview|regulator framework]] and the [[Interrupt overview|interrupt framework]] in Linux  
 
and
 
and
 
* the Cortex<sup>&reg;</sup>-M4 controls it in STM32Cube with [[STM32CubeMP1 architecture|PWR HAL driver]]
 
* the Cortex<sup>&reg;</sup>-M4 controls it in STM32Cube with [[STM32CubeMP1 architecture|PWR HAL driver]]

Attachments

Discussions