Difference between revisions of "How to compile the device tree with the Developer Package"

[quality revision] [quality revision]
m (OP-TEE: unpack and patch sources)
m (OP-TEE: copy the DTS in the source code)
 
Applicable for STM32MP15x lines

1 Purpose[edit]

This article explains how to update the boot chain (OP-TEE with FIP) for a "custom" device tree.
In particular, STM32CubeMX can generate This article concentrates in particular on generating a "custom" device tree based on theSTM32CubeMX.

This article describes how to update the device tree compiled (DTB) part of the boot binaries.

2 Rationale[edit]

There are various rationale reasons for using a custom device tree, such as:

  • the description of a new and private board
  • the swapping of some internal peripherals from Cortex®-M side to Cortex-A side (or the oppositeand vice versa)

3 Prerequisites[edit]

Info white.png Information
Even if STMicroelectronics strongly recommends to use a Linux® environment, the steps described in this article can be executed in a WSL2 (Windows Sub-system Linux 2) environment.

Compiling a new device tree means updating three software components belonging to the complete boot chain (trusted mode), Trusted Firmware A (TF-A), U-Boot, and Linux kernel.


The material required to update the above software components is the following:


  • Custom device tree sources:
    • In the rest of this document, we assume that the custom device tree is generated by STM32CubeMX and stored in a MyDeviceTree_fromCubeMX.tar.xz tarball with following file tree:
MyDeviceTree_fromCubeMX
|-- kernel
|   |-- stm32mp157f-mydevicetree-mx.dts
|-- tf-a
|  |-- stm32mp157f-mydevicetree-mx.dts
|  |-- stm32mp157f-mydevicetree-mx-fw-config.dts
|  |-- stm32mp15-mx.dtsi
|-- u-boot
|  |-- stm32mp157f-mydevicetree-mx.dts
|  |-- stm32mp157f-mydevicetree-mx-u-boot.dtsi
|  |-- stm32mp15-mx.dtsi


  • Make sure the hardware configuration described in the PC _prerequisites#Linux PCprerequisites article has been executed (even with a WSL2 setup)

4 Preparing your environment[edit]

It is recommended to organize the numerous inputs described in #Prerequisites in your environment.
First create a dedicated WORKDIR under your HOME folder and copy there all the inputs listed in #Prerequisites:

cd $HOME
mkdir WORKDIR
cd WORKDIR
export WORKDIR="$PWD"
tar --strip-components=1 -xf <FLASHen.FLASH-ststm32mp1-imageopenstlinux-weston5.15-openstlinuxyocto-westonkirkstone-stm32mp1.mp1-v22.11.23.tar.xz>gz -C $WORKDIR/
tar --strip-components=1 -xf <SOURCESen.SOURCES-ststm32mp1-imageopenstlinux-weston5.15-openstlinuxyocto-westonkirkstone-stm32mp1.mp1-v22.11.23.tar.xz>gz -C $WORKDIR/
tar --strip-components=1 -xf <SDK-st-image-weston-openstlinux-weston-stm32mp1.tar.xz> en.SDK-x86_64-stm32mp1-openstlinux-5.15-yocto-kirkstone-mp1-v22.11.23.tar.gz -C $WORKDIR/
tar xf <MyDeviceTree_fromCubeMX.tar.xz> -C $WORKDIR/

Then proceed with the SDK installation.


The commands described in the rest of the document must be run in an SDK environment context: (Starting_up_the_SDK).

5 Updating the kernel device tree[edit]

Since 'extlinux.conf' explicitly points to the DTB, just update the kernel device tree by replacing the DTB file of the '/boot' partition. The path used must be something like '/boot/<devicetree>.dtb'.

The following chapters describe the procedure to generate and copy the new DTB into the target.

5.1 Kernel : unpack and patch sources[edit]

Info white.png Information
The procedure below is an extract of the README.HOW_TO.txt file which is available in $WORKDIR/sources/arm-ostl-linux-gnueabi/linux-stm32mp-*. Please notice a grep "$>" Note: the "README.HOW_TO.txt describes the few commands " file contains some useful grep "$> commands that are needed to build the artifact of kernel
.

Run the following command into a shell:

pushd $WORKDIR
mkdir -p kernel
tar xf sources/arm-ostl-linux-gnueabi/linux-stm32mp-*/linux-*.tar.xz -C kernel
mv kernel/linux-* kernel/kernel-sources/
pushd kernel/kernel-sources/
for p in $(ls -1 ../../sources/arm-ostl-linux-gnueabi/linux-stm32mp-*/*.patch); do patch -p1 < $p; done
popd
popd

5.2 Kernel : copy the DTS into the source code[edit]

pushd $WORKDIR
cp -r MyDeviceTree_fromCubeMX/kernel/* kernel/kernel-sources/arch/arm/boot/dts/
popd

5.3 Kernel : regenerate the kernel DTB[edit]

Info white.png Information
The procedure below is an extract of the README.HOW_TO.txt file which is available in $WORKDIR/sources/arm-ostl-linux-gnueabi/linux-stm32mp-*. Please notice a grep "$>" Note: the "README.HOW_TO.txt describes the few commands " file contains some useful grep "$> commands that are needed to build the artifact of kernel
.
pushd $WORKDIR/kernel/kernel-sources
make ARCH=arm O="$PWD/../build" multi_v7_defconfig fragment*.config
for f in `ls -1 ../../sources/arm-ostl-linux-gnueabi/linux-stm32mp-*/fragment*.config`; do scripts/kconfig/merge_config.sh -m -r -O $PWD/../build $PWD/../build/.config $f; done
yes "" | make ARCH=arm oldconfig O="$PWD/../build"
make stm32mp157f-mydevicetree-mx.dtb LOADADDR=0xC2000040 O="$PWD/../build"
popd
ls -l $WORKDIR/kernel/build/arch/arm/boot/dts/stm32mp157f-mydevicetree-mx.dtb

5.4 Kernel : copy the DTB into bootfs[edit]

First of , update all the #Updating bootfs with the new DTB so that for it is to be taken it into account at on the next boot of the target.

Then, if needed, edit by #Updating extlinux for the target according to with this new DTB filename. This is only required if the filename of the generated DTB is different from the one used by extlinux to boot.

6 Updating BOOT firmwares[edit]

The BOOT firmwares are TF-A and U-Boot and should must be updated together (CubeMX provides devicetree for TF-A and U-Boot).

6.1 Updating the TF-A device tree[edit]

To update the TF-A device tree, replace the DTB part of the TF-A binary.
The TF-A binary allocates a 'fixed' area for the DTB, just after the 'mkimage" headers. If the DTB is smaller than the reserved area, the remaining memory is padded with zero.

Below the procedure to generate TF-A with a new DTB and then flash it on the target:

6.1.1 TF-A : unpack and patch sources[edit]

Info white.png Information
The procedure below is an extract of the README.HOW_TO.txt file which is available in $WORKDIR/sources/arm-ostl-linux-gnueabi/tf-a-stm32mp-*. Please notice a grep "$>" Note: the "README.HOW_TO.txt describes the few commands " file contains some useful grep "$> commands that are needed to build the artifact of tf-a
.
pushd $WORKDIR
pushd sources/arm-ostl-linux-gnueabi/tf-a-stm32mp-v[0-9]*
mkdir -p tf-a-sources
tar xf tf-a-stm32mp-v[0-9]*.tar.* --one-top-level=tf-a-sources --strip-components=1
pushd tf-a-sources
for p in `ls -1 ../*.patch`; do patch -p1 < $p; done
popd
popd

6.1.2 TF-A : copy the DTS into the source code[edit]

pushd $WORKDIR
cp -r MyDeviceTree_fromCubeMX/tf-a/* sources/arm-ostl-linux-gnueabi/tf-a-stm32mp-v[0-9]*/tf-a-sources/fdts/
popd

6.1.3 TF-A : regenerate TF-A[edit]

Info white.png Information
The procedure below is an extract of the README.HOW_TO.txt file which is available in $WORKDIR/sources/arm-ostl-linux-gnueabi/tf-a-stm32mp-*. Please notice a grep "$>" Note: the "README.HOW_TO.txt describes the few commands " file contains some useful grep "$> commands that are needed to build the artifact of tf-a
.

First only the TF-A "intermediates" artifacts are generated, the FIP image will be generated at final step (U-Boot compilation).


pushd $WORKDIR/sources/arm-ostl-linux-gnueabi/tf-a-stm32mp-v[0-9]*/tf-a-sources
export FIP_DEPLOYDIR_ROOT=$PWD/../../FIP_artifacts
make -f ../Makefile.sdk TF_A_DEVICETREE=<devicetree_name> TF_A_CONFIG="optee emmc nand nor sdcard uart usb" DEPLOYDIR=$FIP_DEPLOYDIR_ROOT/arm-trusted-firmware stm32
<devicetree_name> : is the device tree just copied, i.e.: stm32mp157f-mydevicetree-mx
DEPLOYDIR is the path where intermediate binaries of tf-a should be deployed (requiered by fip-tools to generate fip image)
popd

6.2 Updating the OP-TEE device tree[edit]

To update the OP-TEE device tree, replace the DTB part of the OP-TEE binary.
Adding a new device tree to the OP-TEE source code forces the Makefile to regenerate new OP-TEE binaries.
The following chapters describe the procedure to update the OP-TEE device tree.

6.2.1 OP-TEE: unpack and patch sources[edit]

Info white.png Information
The procedure below is an extract of the README.HOW_TO.txt file which is available in $WORKDIR/sources/arm-ostl-linux-gnueabi/optee-os-stm32mp-*. Please notice a grep "$>" Note: the "README.HOW_TO.txt describes the few commands " file contains some useful grep "$> commands that are needed to build the artifact of OP-TEE
.
pushd $WORKDIR
pushd sources/arm-ostl-linux-gnueabi/optee-os-stm32mp-[0-9]*
tar xf optee-os-stm32mp-[0-9]*.tar.* --one-top-level=optee-os-sources --strip-components=1
pushd optee-os-sources
tar xfz ../fonts.tar.gz
for p in `ls -1 ../*.patch`; do patch -p1 < $p; done
popd
popd

6.2.2 OP-TEE: copy the DTS in the source code[edit]

pushd $WORKDIR
cp MyDeviceTree_fromCubeMX/u-bootoptee/* sources/arm-ostl-linux-gnueabi/optee-os-stm32mp-*/optee-os-sources/core/arch/arm/dts/
popd

6.2.3 OP-TEE: regenerate fip image within new OP-TEE[edit]

Info white.png Information
The procedure below is an extract of the README.HOW_TO.txt file which is available in $WORKDIR/sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-*. Please notice a grep "$>" Note: the "README.HOW_TO.txt describes the few commands " file contains some useful grep "$> commands that are needed to build the artifact of OP-TEE
.
pushd $WORKDIR/sources/arm-ostl-linux-gnueabi/optee-os-stm32mp-[0-9]*/optee-os-sources
make -f ../Makefile.sdk CFG_EMBED_DTB_SOURCE_FILE=<device tree> OPTEE_DRAMSIZE=<RAM size> DEPLOYDIR=~/views/temp/CubeIde/WORKDIR/sources/arm-ostl-linux-gnueabi/FIP_artifacts/optee optee
<device tree> : is the device tree just copied, i.e.: stm32mp157f-mydevicetree-mx
<RAM size>  : is the RAM size of the board selected by the device treee, i.e.: 0x20000000
popd

6.3 Updating the U-Boot device tree[edit]

To update the U-Boot device tree, need to replace the U-Boot DTB in FIP image.

6.3.1 U-Boot : unpack and patch sources[edit]

Info white.png Information
The procedure below is an extract of the README.HOW_TO.txt file which is available in $WORKDIR/sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-*. Please notice a grep "$>" Note: the "README.HOW_TO.txt describes the few commands " file contains some useful grep "$> commands that are needed to build the artifact of U-Boot
.
pushd $WORKDIR
pushd sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-v[0-9]*
tar xf u-boot-stm32mp-v[0-9]*.tar.* --one-top-level=u-boot-sources --strip-components=1
pushd u-boot-sources
for p in `ls -1 ../*.patch`; do patch -p1 < $p; done
popd
popd

6.3.2 U-Boot : copy the DTS in the U-Boot source code[edit]

pushd $WORKDIR
cp MyDeviceTree_fromCubeMX/u-boot/* sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-v[0-9]*/u-boot-sources/arch/arm/dts/
popd

6.3.3 U-Boot : regenerate fip image within new U-Boot binary[edit]

Info white.png Information
The procedure below is an extract of the README.HOW_TO.txt file which is available in $WORKDIR/sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-*. Please notice a grep "$>" Note: the "README.HOW_TO.txt describes the few commands " file contains some useful grep "$> commands that are needed to build the artifact of U-Boot
.
pushd $WORKDIR/sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-v[0-9]*/u-boot-sources
make stm32mp1[35]_defconfig
make -f ../Makefile.sdk UBOOT_CONFIG=trusted UBOOT_DEFCONFIG=stm32mp1[35]_defconfig UBOOT_BINARY=u-boot.dtb FIP_CONFIG="optee" DEVICETREE=<device tree> all
<device tree> : is the device tree just copied, i.e.: stm32mp157f-mydevicetree-mx
popd

6.3.4 U-Boot : copy U-Boot binary into the target[edit]

  • Because of 'extlinux' and before flashing the new fip image, make sure #Updating extlinux is compliant with the 'compatible' value in the DTS file.
  • Then, using STM32CubeProgrammer, flash the tf-a-xxxx.stm32 file (generated at tf-a step) into the 'fsbl1' and 'fsbl2' partition of the target and the 'fip-a' partition with fip-stm32mpxxxx.bin file (generated just above).

7 Update methods[edit]

7.1 Updating extlinux[edit]

7.1.1 extlinux basics[edit]

extlinux describes how U-Boot boots. Updating extlinux consists in updating the extlinux.conf:

  • In case of an DK-2 board booting from the sdcard. A stm32mp157f-dk2_extlinux.conf file is located in /boot/mmc0_extlinux/,
  • otherwise if there is no specific extlinux.conf for your board, then the extlinux.conf is taking into account.

extlinux.conf is the description of a boot menu with one or several entries; 'DEFAULT' selects the default entry.
Below an example of extlinux.conf:

menu title Select the boot mode
MENU BACKGROUND ../splash.bmp
TIMEOUT 5
DEFAULT stm32mp157f-mydevicetree-mx
LABEL stm32mp157f-dk2-sdcard
        KERNEL /uImage
        FDTDIR /
        APPEND root=PARTUUID=e91c4e10-16e6-4c0e-bd0e-77becf4a3582 rootwait rw console=ttySTM0,115200
LABEL stm32mp157f-dk2-a7-examples-sdcard
        KERNEL /uImage
        FDT /stm32mp157f-dk2-a7-examples.dtb
        APPEND root=PARTUUID=e91c4e10-16e6-4c0e-bd0e-77becf4a3582 rootwait rw console=ttySTM0,115200
LABEL stm32mp157f-dk2-m4-examples-sdcard
        KERNEL /uImage
        FDT /stm32mp157f-dk2-m4-examples.dtb
        APPEND root=PARTUUID=e91c4e10-16e6-4c0e-bd0e-77becf4a3582 rootwait rw console=ttySTM0,115200
LABEL stm32mp157f-mydevicetree-mx
       KERNEL /uImage
       FDT /stm32mp157f-mydevicetree-mx.dtb
       APPEND root=PARTUUID=e91c4e10-16e6-4c0e-bd0e-77becf4a3582 rootwait rw console=ttySTM0,115200

Please update/add the highlighted lines according to what have been compiled in chapter 5, 6 and/or 7:

  • DEFAULT: This is the default 'LABEL' to boot
  • LABEL : The entry 'LABEL' is the value of 'compatible' of the DTS file used by U-Boot.
    The 'compatible' value is at head of the DTS file and looks like : "st,stm32mp157f-mydevicetree-mx"
  • FDT : The path from /boot of the kernel DTB to use

7.2 Updating bootfs[edit]

There are two methods to update bootfs:

  • On an up and running target
scp stm32mp157f-mydevicetree-mx.dtb root@<Target_IP>:/boot/
  • Directly into 'bootfs' image

You do not need to have a target up and running. Only the "st-image-bootfs-openstlinux-weston-stm32mp1.ext4" file is required. To modify an 'ext4' file, a loopback mount, avaible available within any Linux Distribution (even through WSL2), is required:

mkdir -p $WORKDIR/bootfs
mount -o loop <st-image-bootfs-openstlinux-weston-stm32mp1.ext4> $WORKDIR/bootfs
##Then copy the new dtb file at the root of $WORKDIR/bootfs
umount $WORKDIR/bootfs
sync

Then use STM32CubeProgrammer to update the bootfs partiton partition.

7.2.1 Updating extlinux[edit]

Updating 'extlinux' consists in modifying the extlinux.conf. There are two ways to do thisproceed:

  • On an up and running target

Open an ssh connection to the target or use a direct connection with a tty terminal. Then use an vi editor to modify the extlinux.conf file.

Do not forget to synchronize the file system before rebooting the target:
sync
  • Into 'bootfs' image directly

You do not need to have a target up and running. Only the "st-image-bootfs-openstlinux-weston-stm32mp1.ext4" file is required. To modify an 'ext4' file, a loopback mount tool, avaible available in any Linux Distribution (even through WSL2), is needed:

mkdir -p $WORKDIR/bootfs
sudo mount -o loop <st-image-bootfs-openstlinux-weston-stm32mp1.ext4> $WORKDIR/bootfs
##Then edit the extlinux.conf file (for WSL2 use a 'Linux' type editor; vi, ...)
##Once extlinux.conf up-to-date, umount loopback and flash the bootfs into sdcard with STM32CubeProgrammer



<noinclude>{{ApplicableFor
|MPUs list=STM32MP15x
|MPUs checklist=STM32MP13x, STM32MP15x
}}</noinclude>


==Purpose==
This article explains how to update the [[Boot_chain_overview|boot chain]] (OP-TEE with FIP) for a "custom" device tree. <br/>
In particular, STM32CubeMX can generate This article concentrates in particular on generating a "custom" device tree based on theSTM32CubeMX.<br/>


This article describes how to update the device tree compiled (DTB) part of the boot binaries.

==Rationale==

There are various rationalereasons for using a custom ''device tree'', such as:
* the description of a new and private board
* the swapping of some internal peripherals from Cortex<sup>&reg;</sup>-M side to Cortex-A side (or the oppositeand vice versa)

==Prerequisites==
{{Info|Even if STMicroelectronics strongly recommends to use a Linux<sup>&reg;</sup> environment, the steps described in this article can be executed in a [[PC_prerequisites#WSL2_-28experimental-29|WSL2]] (Windows Sub-system Linux 2) environment. }}

Compiling a new device tree means updating three software components belonging to the complete [[Boot_chain_overview|boot chain]] (trusted mode), Trusted Firmware A (TF-A), U-Boot, and Linux kernel.<br/>


The material required to update the above software components is the following:
* '''[[Which STM32MPU Embedded Software Package better suits your needs#Starter_Package|Starter package]]''': 
** the flashlayout as well as the images to flash, provided within the '''[{{EcosystemRelease/Package | revision=4.0.0latest | package=Images package | request=url}}/{{EcosystemRelease/Package | revision=4.0.0latest | package=Images package | request=name}} {{EcosystemRelease/Package | revision=4.0.0latest | package=Images package | request=name}}]''' file
* '''[[Which STM32MPU Embedded Software Package better suits your needs#Developer_Package|Developer package]]''': 
** the component sources and patches, provided within the '''[{{EcosystemRelease/Package | revision=4.0.0latest | package=OpenSTLinux BSP package | request=url}}/{{EcosystemRelease/Package | revision=4.0.0latest | package=OpenSTLinux BSP package | request=name}} {{EcosystemRelease/Package | revision=4.0.0latest | package=OpenSTLinux BSP package  | request=name}}]''' file
** the SDK toolchain, provided within the '''[{{EcosystemRelease/Package | revision=4.0.0latest | package=SDK package | request=url}}/{{EcosystemRelease/Package | revision=4.0.0latest | package=SDK package | request=name}} {{EcosystemRelease/Package | revision=4.0.0latest | package=SDK package | request=name}}]''' file
* the '''[[STM32CubeProgrammer]]''', which is the tool used to flash the images and binaries into the target. <br/>

* '''Custom device tree sources''':
** In the rest of this document, we assume that the custom device tree is generated by [[STM32CubeMX]] and stored in a ''MyDeviceTree_fromCubeMX.tar.xz'' tarball with following file tree:<pre>MyDeviceTree_fromCubeMX
|-- kernel
|   |-- stm32mp157f-mydevicetree-mx.dts
|-- tf-a
|  |-- stm32mp157f-mydevicetree-mx.dts
|  |-- stm32mp157f-mydevicetree-mx-fw-config.dts
|  |-- stm32mp15-mx.dtsi
|-- u-boot
|  |-- stm32mp157f-mydevicetree-mx.dts
|  |-- stm32mp157f-mydevicetree-mx-u-boot.dtsi
|  |-- stm32mp15-mx.dtsi</pre>
<br/>

* Make sure the hardware configuration described in the '''[[PC_prerequisites#Linux PC-C2-AE_PC|PC prerequisites article]] has been executed''' (even with a  [[PC_prerequisites#WSL2_-28experimental-29|WSL2]] setup)

==Preparing your environment==
It is recommended to organize the numerous inputs described in [[#Prerequisites]] in your environment.<br/>

First create a dedicated ''WORKDIR'' under your ''HOME'' folder and copy there all the inputs listed in [[#Prerequisites]]:
:{{PC$}} cd $HOME
:{{PC$}} mkdir WORKDIR
:{{PC$}} cd WORKDIR
:{{PC$}} export WORKDIR="$PWD"
:{{PC$}} tar --strip-components=1 -xf {{HighlightParam|''<FLASH-st-image-weston-openstlinux-weston-stm32mp1.tar.xz>''EcosystemRelease/Package | revision=latest | package=Images package | request=name}} -C $WORKDIR/
:{{PC$}} tar --strip-components=1 -xf {{HighlightParam|''<SOURCES-st-image-weston-openstlinux-weston-stm32mp1.tar.xz>''EcosystemRelease/Package | revision=latest | package=OpenSTLinux BSP package  | request=name}} -C $WORKDIR/
:{{PC$}} tar --strip-components=1 -xf {{HighlightParam|''<SDK-st-image-weston-openstlinux-weston-stm32mp1.tar.xz>''EcosystemRelease/Package | revision=latest | package=SDK package | request=name}} -C $WORKDIR/
:{{PC$}} tar xf {{HighlightParam|''<MyDeviceTree_fromCubeMX.tar.xz>''}} -C $WORKDIR/

Then proceed with the [[Install_the_SDK#Run_the_SDK_installation_script|SDK installation]].

The commands described in the rest of the document must be run in an SDK environment context: ([[Install_the_SDK#Starting_up_SDK#Start the_ SDK up|Starting_up_the_SDK]]).

==Updating the kernel device tree ==
Since 'extlinux.conf' explicitly points to the DTB, just update the kernel device tree by replacing the DTB file of the '/boot' partition. The path used must be something like '/boot/<devicetree>.dtb'.

The  following chapters describe the procedure to generate and copy the new DTB into the target.
=== Kernel : unpack and patch sources ===
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/linux-stm32mp-*''. Please notice a ''grep "$>" Note: the "README.HOW_TO.txt'' describes the few commands" file contains some useful ''grep "$> commands that are needed to build the artifact of kernel}}.


Run the following command into a shell:
:{{PC$}} pushd $WORKDIR
:{{PC$}} mkdir -p kernel
:{{PC$}} tar xf sources/arm-ostl-linux-gnueabi/linux-stm32mp-*/linux-*.tar.xz -C kernel
:{{PC$}} mv kernel/linux-* kernel/kernel-sources/
:{{PC$}} pushd kernel/kernel-sources/
:{{PC$}} for p in $(ls -1 ../../sources/arm-ostl-linux-gnueabi/linux-stm32mp-*/*.patch); do patch -p1 < $p; done
:{{PC$}} popd
:{{PC$}} popd

=== Kernel : copy the DTS into the source code ===
:{{PC$}} pushd $WORKDIR
:{{PC$}} cp -r MyDeviceTree_fromCubeMX/kernel/* kernel/kernel-sources/arch/arm/boot/dts/
:{{PC$}} popd

=== Kernel : regenerate the kernel DTB ===
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/linux-stm32mp-*''. Please notice a ''grep "$>" README.HOW_TO.txt'' describes the few commands < $p; done
:{{PC$}} popd
:{{PC$}} popd

=== Kernel : copy the DTS into the source code ===
:{{PC$}} pushd $WORKDIR
:{{PC$}} cp -r MyDeviceTree_fromCubeMX/kernel/* kernel/kernel-sources/arch/arm/boot/dts/
:{{PC$}} popd

=== Kernel : regenerate the kernel DTB ===
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/linux-stm32mp-*''. Note: the "README.HOW_TO.txt" file contains some useful ''grep "$> commands that are needed to build the artifact of kernel}}.


:{{PC$}} pushd $WORKDIR/kernel/kernel-sources
:{{PC$}} make ARCH=arm O="$PWD/../build" multi_v7_defconfig fragment*.config
:{{PC$}} for f in `ls -1 ../../sources/arm-ostl-linux-gnueabi/linux-stm32mp-*/fragment*.config`; do scripts/kconfig/merge_config.sh -m -r -O $PWD/../build $PWD/../build/.config $f; done
:{{PC$}} yes "" | make ARCH=arm oldconfig O="$PWD/../build"
:{{PC$}} make stm32mp157f-mydevicetree-mx.dtb LOADADDR=0xC2000040 O="$PWD/../build"
:{{PC$}} popd
:{{PC$}} ls -l $WORKDIR/kernel/build/arch/arm/boot/dts/stm32mp157f-mydevicetree-mx.dtb

=== Kernel : copy the DTB into bootfs ===
First of, update all the [[#Updating bootfs]] with the new DTB so that for it is to be taken it into account aton the next boot of the target.

Then, if needed, edit by [[#Updating extlinux]] for the target according to with this new DTB filename. This is only required if the filename of the generated DTB is different from the one used by extlinux to boot.

==Updating BOOT firmwares ==The BOOT firmwares are TF-A and U-Boot and shouldmust be updated together (CubeMX provides devicetree for TF-A and U-Boot).
===Updating the TF-A device tree ===
To update the TF-A device tree, replace the DTB part of the TF-A binary.<br/>

The TF-A binary allocates a 'fixed' area for the DTB, just after the 'mkimage" headers. If the DTB is smaller than the reserved area, the remaining memory is padded with zero.

Below the procedure to generate TF-A with a new DTB and then flash it on the target:<br/>

==== TF-A : unpack and patch sources ====
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/tf-a-stm32mp-*''. Please notice a ''grep "$>" Note: the "README.HOW_TO.txt'' describes the few commands" file contains some useful ''grep "$> commands that are needed to build the artifact of tf-a}}.


:{{PC$}} pushd $WORKDIR
:{{PC$}} pushd sources/arm-ostl-linux-gnueabi/tf-a-stm32mp-v[0-9]*
:{{PC$}} mkdir -p tf-a-sources
:{{PC$}} tar xf tf-a-stm32mp-v[0-9]*.tar.* --one-top-level=tf-a-sources --strip-components=1
:{{PC$}} pushd tf-a-sources
:{{PC$}} for p in `ls -1 ../*.patch`; do patch -p1 < $p; done
:{{PC$}} popd
:{{PC$}} popd

==== TF-A : copy the DTS into the source code ====
:{{PC$}}  pushd $WORKDIR
:{{PC$}}  cp -r MyDeviceTree_fromCubeMX/tf-a/* sources/arm-ostl-linux-gnueabi/tf-a-stm32mp-v[0-9]*/tf-a-sources/fdts/
:{{PC$}}  popd

==== TF-A : regenerate TF-A ====
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/tf-a-stm32mp-*''. Please notice a ''grep "$>" README.HOW_TO.txt'' describes the few commands < $p; done
:{{PC$}} popd
:{{PC$}} popd

==== TF-A : copy the DTS into the source code ====
:{{PC$}}  pushd $WORKDIR
:{{PC$}}  cp -r MyDeviceTree_fromCubeMX/tf-a/* sources/arm-ostl-linux-gnueabi/tf-a-stm32mp-v[0-9]*/tf-a-sources/fdts/
:{{PC$}}  popd

==== TF-A : regenerate TF-A ====
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/tf-a-stm32mp-*''. Note: the "README.HOW_TO.txt" file contains some useful ''grep "$> commands that are needed to build the artifact of tf-a}}.

First only the TF-A "intermediates" artifacts are generated, the FIP image will be generated at final step (U-Boot compilation).

:{{PC$}} pushd $WORKDIR/sources/arm-ostl-linux-gnueabi/tf-a-stm32mp-v[0-9]*/tf-a-sources
:{{PC$}} export FIP_DEPLOYDIR_ROOT=$PWD/../../FIP_artifacts
:{{PC$}} make -f ../Makefile.sdk TF_A_DEVICETREE={{HighlightParam|''<devicetree_name>''}} TF_A_CONFIG="optee  emmc nand nor sdcard  uart usb" DEPLOYDIR=$FIP_DEPLOYDIR_ROOT/arm-trusted-firmware '''stm32'''
::{{HighlightParam|''<devicetree_name>''}} : is the device tree just copied, i.e.: '''''stm32mp157f-mydevicetree-mx'''''
::''DEPLOYDIR'' is the path where intermediate binaries of tf-a should be deployed (requiered by fip-tools to generate fip image)
:{{PC$}} popd

=== Updating the OP-TEE device tree ===
To update the OP-TEE device tree, replace the DTB part of the OP-TEE binary.<br/>

Adding a new device tree to the OP-TEE source code forces the Makefile to regenerate new OP-TEE binaries. <br/>

The following chapters describe the procedure to update the OP-TEE device tree.

==== OP-TEE: unpack and patch sources ====
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/optee-os-stm32mp-*''. Please notice a ''grep "$>" Note: the "README.HOW_TO.txt'' describes the few commands" file contains some useful ''grep "$> commands that are needed to build the artifact of OP-TEE}}

. 
:{{PC$}} pushd $WORKDIR
:{{PC$}} pushd sources/arm-ostl-linux-gnueabi/optee-os-stm32mp-[0-9]*
:{{PC$}} tar xf optee-os-stm32mp-[0-9]*.tar.* --one-top-level=optee-os-sources --strip-components=1
:{{PC$}} pushd optee-os-sources
:{{PC$}} tar xfz ../fonts.tar.gz
:{{PC$}} for p in `ls -1 ../*.patch`; do patch -p1 < $p; done
:{{PC$}} popd
:{{PC$}} popd

==== OP-TEE: copy the DTS in the source code ====
:{{PC$}} pushd $WORKDIR
:{{PC$}} cp MyDeviceTree_fromCubeMX/u-boot/* sources/arm-ostl-linux-gnueabi/optee-os-stm32mp-*/optee-os-sources/core/arch/arm/dts/
:{{PC$}} popd

==== OP-TEE: regenerate fip image within new OP-TEE ====
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-*''. Please notice a ''grep "$>" README.HOW_TO.txt'' describes the few commands < $p; done
:{{PC$}} popd
:{{PC$}} popd

==== OP-TEE: copy the DTS in the source code ====
:{{PC$}} pushd $WORKDIR
:{{PC$}} cp MyDeviceTree_fromCubeMX/optee/* sources/arm-ostl-linux-gnueabi/optee-os-stm32mp-*/optee-os-sources/core/arch/arm/dts/
:{{PC$}} popd

==== OP-TEE: regenerate fip image within new OP-TEE ====
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-*''. Note: the "README.HOW_TO.txt" file contains some useful ''grep "$> commands that are needed to build the artifact of OP-TEE}}.


:{{PC$}} pushd $WORKDIR/sources/arm-ostl-linux-gnueabi/optee-os-stm32mp-[0-9]*/optee-os-sources
:{{PC$}} make -f ../Makefile.sdk CFG_EMBED_DTB_SOURCE_FILE={{HighlightParam|''<device tree>''}}  OPTEE_DRAMSIZE={{HighlightParam|''<RAM size>''}} DEPLOYDIR=~/views/temp/CubeIde/WORKDIR/sources/arm-ostl-linux-gnueabi/FIP_artifacts/optee optee
: {{HighlightParam|''<device tree>''}} : is the device tree just copied, i.e.: stm32mp157f-mydevicetree-mx
: {{HighlightParam|''<RAM size>''}}   : is the RAM size of the board selected by the device treee, i.e.: 0x20000000
:{{PC$}} popd

=== Updating the U-Boot device tree ===
To update the U-Boot device tree, need to replace the U-Boot DTB in FIP image.

==== U-Boot : unpack and patch sources ====
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-*''. Please notice a ''grep "$>" Note: the "README.HOW_TO.txt'' describes the few commands" file contains some useful ''grep "$> commands that are needed to build the artifact of U-Boot}}

. 
:{{PC$}} pushd $WORKDIR
:{{PC$}} pushd sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-v[0-9]*
:{{PC$}} tar xf u-boot-stm32mp-v[0-9]*.tar.* --one-top-level=u-boot-sources --strip-components=1
:{{PC$}} pushd u-boot-sources
:{{PC$}} for p in `ls -1 ../*.patch`; do patch -p1 < $p; done
:{{PC$}} popd
:{{PC$}} popd

==== U-Boot : copy the DTS in the U-Boot source code ====
:{{PC$}} pushd $WORKDIR
:{{PC$}} cp MyDeviceTree_fromCubeMX/u-boot/* sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-v[0-9]*/u-boot-sources/arch/arm/dts/
:{{PC$}} popd

==== U-Boot : regenerate fip image within new U-Boot binary====
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-*''. Please notice a ''grep "$>" README.HOW_TO.txt'' describes the few commands < $p; done
:{{PC$}} popd
:{{PC$}} popd

==== U-Boot : copy the DTS in the U-Boot source code ====
:{{PC$}} pushd $WORKDIR
:{{PC$}} cp MyDeviceTree_fromCubeMX/u-boot/* sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-v[0-9]*/u-boot-sources/arch/arm/dts/
:{{PC$}} popd

==== U-Boot : regenerate fip image within new U-Boot binary====
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-*''. Note: the "README.HOW_TO.txt" file contains some useful ''grep "$> commands that are needed to build the artifact of U-Boot}}

. 
:{{PC$}} pushd $WORKDIR/sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-v[0-9]*/u-boot-sources
:{{PC$}} make stm32mp1[35]_defconfig
:{{PC$}} make -f ../Makefile.sdk  UBOOT_CONFIG=trusted UBOOT_DEFCONFIG=stm32mp1[35]_defconfig UBOOT_BINARY=u-boot.dtb FIP_CONFIG="optee" DEVICETREE={{HighlightParam|''<device tree>''}} all
: {{HighlightParam|''<device tree>''}} : is the device tree just copied, i.e.: stm32mp157f-mydevicetree-mx
:{{PC$}} popd

==== U-Boot : copy U-Boot binary into the target ====

* Because of 'extlinux' and before flashing the new ''fip image'', make sure [[#Updating extlinux]] is compliant with the 'compatible' value in the DTS file.<br/>

* Then, using [[STM32CubeProgrammer]], flash the '''tf-a-xxxx.stm32''' file (generated at tf-a step) into the 'fsbl1' and 'fsbl2' partition of the target and the 'fip-a' partition with '''fip-stm32mpxxxx.bin''' file (generated just above).

= Update methods =
== Updating extlinux ==
=== extlinux basics ===
'''extlinux''' describes how U-Boot boots. Updating '''extlinux''' consists in updating the extlinux.conf:
* In case of an DK-2 board booting from the sdcard. A '''stm32mp157f-dk2_extlinux.conf''' file is located in ''/boot/mmc0_extlinux/'',
* otherwise if there is no specific extlinux.conf for your board, then the '''extlinux.conf''' is taking into account.

'''extlinux.conf''' is the description of a boot menu with one or several entries; 'DEFAULT' selects the default entry.<br/>

Below an example of '''extlinux.conf''':
 menu title Select the boot mode
 MENU BACKGROUND ../splash.bmp
 TIMEOUT 5
 {{red|{{highlight|DEFAULT}} stm32mp157f-mydevicetree-mx}}
 LABEL stm32mp157f-dk2-sdcard
         KERNEL /uImage
         FDTDIR /
         APPEND root=PARTUUID=e91c4e10-16e6-4c0e-bd0e-77becf4a3582 rootwait rw console=ttySTM0,115200
 LABEL stm32mp157f-dk2-a7-examples-sdcard
         KERNEL /uImage
         FDT /stm32mp157f-dk2-a7-examples.dtb
         APPEND root=PARTUUID=e91c4e10-16e6-4c0e-bd0e-77becf4a3582 rootwait rw console=ttySTM0,115200
 LABEL stm32mp157f-dk2-m4-examples-sdcard
         KERNEL /uImage
         FDT /stm32mp157f-dk2-m4-examples.dtb
         APPEND root=PARTUUID=e91c4e10-16e6-4c0e-bd0e-77becf4a3582 rootwait rw console=ttySTM0,115200
 {{red|{{highlight|LABEL}} stm32mp157f-mydevicetree-mx
        KERNEL /uImage
        {{highlight|FDT}} /stm32mp157f-mydevicetree-mx.dtb
        APPEND root&#61;PARTUUID&#61;e91c4e10-16e6-4c0e-bd0e-77becf4a3582 rootwait rw console&#61;ttySTM0,115200}}

Please update/add the highlighted lines according to what have been compiled in chapter 5, 6 and/or 7:
* {{highlight|DEFAULT}}: This is the default 'LABEL' to boot
* {{highlight|LABEL}} : The entry 'LABEL' is the value of 'compatible' of the DTS file used by U-Boot.
*: The 'compatible' value is at head of the DTS file and looks like : "st,stm32mp157f-mydevicetree-mx"
* {{highlight|FDT}} : The path from /boot of the kernel DTB to use

== Updating bootfs ==
There are two methods to update bootfs: 

* <u>{{STDarkBlue|On an up and running target}}</u>

:{{PC$}} scp stm32mp157f-mydevicetree-mx.dtb root@{{HighlightParam|''<Target_IP>''}}:/boot/
* <u>{{STDarkBlue|Directly into 'bootfs' image}}</u>

You do not need to have a target up and running. Only the "st-image-bootfs-openstlinux-weston-stm32mp1.ext4" file is required.
To modify an 'ext4' file, a loopback mount, avaibleavailable within any Linux Distribution (even through [[PC_prerequisites#WSL2_-28experimental-29|WSL2]]), is required:
:{{PC$}} mkdir -p $WORKDIR/bootfs
:{{PC$}} mount -o loop {{HighlightParam|''&lt;st-image-bootfs-openstlinux-weston-stm32mp1.ext4&gt;''}} $WORKDIR/bootfs
:{{grey|##Then copy the new dtb file at the root of $WORKDIR/bootfs}}
:{{PC$}} umount $WORKDIR/bootfs
:{{PC$}} sync
Then use [[STM32CubeProgrammer]] to update the bootfs partitonpartition.


=== Updating extlinux ===
Updating 'extlinux' consists in modifying the extlinux.conf. There are two ways to do thisproceed:
* <u>{{STDarkBlue|On an up and running target}}</u>

Open an ssh connection to the target or use a direct connection with a tty terminal. Then use an vi editor to modify the extlinux.conf file.<br/>

:{{highlight| Do not forget to synchronize the file system before rebooting the target:}}
:{{Board$}} sync

* <u>{{STDarkBlue|Into 'bootfs' image directly}}</u>

You do not need to have a target up and running. Only the "st-image-bootfs-openstlinux-weston-stm32mp1.ext4" file is required.
To modify an 'ext4' file, a loopback mount tool, avaibleavailable in any Linux Distribution (even through [[PC_prerequisites#WSL2_-28experimental-29|WSL2]]), is needed:
:{{PC$}} mkdir -p $WORKDIR/bootfs
:{{PC$}} sudo mount -o loop {{HighlightParam|&lt;st-image-bootfs-openstlinux-weston-stm32mp1.ext4&gt;}} $WORKDIR/bootfs
:{{grey|##Then edit the extlinux.conf file (for WSL2 use a 'Linux' type editor; vi, ...)}}
:{{grey|##Once extlinux.conf up-to-date, umount loopback and flash the bootfs into sdcard with [[STM32CubeProgrammer]]}}
<noinclude>
{{PublicationRequestId | 24428| 2022-08-29 | }}[[Category:How to build software]]</noinclude>
(8 intermediate revisions by 4 users not shown)
Line 6: Line 6:
 
==Purpose==
 
==Purpose==
 
This article explains how to update the [[Boot_chain_overview|boot chain]] (OP-TEE with FIP) for a "custom" device tree. <br/>
 
This article explains how to update the [[Boot_chain_overview|boot chain]] (OP-TEE with FIP) for a "custom" device tree. <br/>
In particular, STM32CubeMX can generate a "custom" device tree.<br/>
+
This article concentrates in particular on generating a "custom" device tree based on theSTM32CubeMX.<br/>
   
 
This article describes how to update the device tree compiled (DTB) part of the boot binaries.
 
This article describes how to update the device tree compiled (DTB) part of the boot binaries.
Line 12: Line 12:
 
==Rationale==
 
==Rationale==
   
There are various rationale for using a custom ''device tree'', such as:
+
There are various reasons for using a custom ''device tree'', such as:
 
* the description of a new and private board
 
* the description of a new and private board
* the swapping of some internal peripherals from Cortex<sup>&reg;</sup>-M side to Cortex-A side (or the opposite)
+
* the swapping of some internal peripherals from Cortex<sup>&reg;</sup>-M side to Cortex-A side (and vice versa)
   
 
==Prerequisites==
 
==Prerequisites==
Line 24: Line 24:
 
The material required to update the above software components is the following:
 
The material required to update the above software components is the following:
 
* '''[[Which STM32MPU Embedded Software Package better suits your needs#Starter_Package|Starter package]]''':  
 
* '''[[Which STM32MPU Embedded Software Package better suits your needs#Starter_Package|Starter package]]''':  
** the flashlayout as well as the images to flash, provided within the '''[{{EcosystemRelease/Package | revision=4.0.0 | package=Images package | request=url}}/{{EcosystemRelease/Package | revision=4.0.0 | package=Images package | request=name}} {{EcosystemRelease/Package | revision=4.0.0 | package=Images package | request=name}}]''' file
+
** the flashlayout as well as the images to flash, provided within the '''[{{EcosystemRelease/Package | revision=latest | package=Images package | request=url}}/{{EcosystemRelease/Package | revision=latest | package=Images package | request=name}} {{EcosystemRelease/Package | revision=latest | package=Images package | request=name}}]''' file
 
* '''[[Which STM32MPU Embedded Software Package better suits your needs#Developer_Package|Developer package]]''':  
 
* '''[[Which STM32MPU Embedded Software Package better suits your needs#Developer_Package|Developer package]]''':  
** the component sources and patches, provided within the '''[{{EcosystemRelease/Package | revision=4.0.0 | package=OpenSTLinux BSP package | request=url}}/{{EcosystemRelease/Package | revision=4.0.0 | package=OpenSTLinux BSP package | request=name}} {{EcosystemRelease/Package | revision=4.0.0 | package=OpenSTLinux BSP package  | request=name}}]''' file
+
** the component sources and patches, provided within the '''[{{EcosystemRelease/Package | revision=latest | package=OpenSTLinux BSP package | request=url}}/{{EcosystemRelease/Package | revision=latest | package=OpenSTLinux BSP package | request=name}} {{EcosystemRelease/Package | revision=latest | package=OpenSTLinux BSP package  | request=name}}]''' file
** the SDK toolchain, provided within the '''[{{EcosystemRelease/Package | revision=4.0.0 | package=SDK package | request=url}}/{{EcosystemRelease/Package | revision=4.0.0 | package=SDK package | request=name}} {{EcosystemRelease/Package | revision=4.0.0 | package=SDK package | request=name}}]''' file
+
** the SDK toolchain, provided within the '''[{{EcosystemRelease/Package | revision=latest | package=SDK package | request=url}}/{{EcosystemRelease/Package | revision=latest | package=SDK package | request=name}} {{EcosystemRelease/Package | revision=latest | package=SDK package | request=name}}]''' file
 
* the '''[[STM32CubeProgrammer]]''', which is the tool used to flash the images and binaries into the target.  
 
* the '''[[STM32CubeProgrammer]]''', which is the tool used to flash the images and binaries into the target.  
 
<br/>
 
<br/>
Line 45: Line 45:
 
</pre>
 
</pre>
 
<br/>
 
<br/>
* Make sure the hardware configuration described in '''[[PC_prerequisites#Linux PC]] has been executed''' (even with a  [[PC_prerequisites#WSL2_-28experimental-29|WSL2]] setup)
+
* Make sure the hardware configuration described in the '''[[PC_prerequisites#Linux-C2-AE_PC|PC prerequisites article]] has been executed''' (even with a  [[PC_prerequisites#WSL2_-28experimental-29|WSL2]] setup)
   
 
==Preparing your environment==
 
==Preparing your environment==
Line 54: Line 54:
 
:{{PC$}} cd WORKDIR
 
:{{PC$}} cd WORKDIR
 
:{{PC$}} export WORKDIR="$PWD"
 
:{{PC$}} export WORKDIR="$PWD"
:{{PC$}} tar --strip-components=1 -xf {{HighlightParam|''<FLASH-st-image-weston-openstlinux-weston-stm32mp1.tar.xz>''}} -C $WORKDIR/
+
:{{PC$}} tar --strip-components=1 -xf {{EcosystemRelease/Package | revision=latest | package=Images package | request=name}} -C $WORKDIR/
:{{PC$}} tar --strip-components=1 -xf {{HighlightParam|''<SOURCES-st-image-weston-openstlinux-weston-stm32mp1.tar.xz>''}} -C $WORKDIR/
+
:{{PC$}} tar --strip-components=1 -xf {{EcosystemRelease/Package | revision=latest | package=OpenSTLinux BSP package  | request=name}} -C $WORKDIR/
:{{PC$}} tar --strip-components=1 -xf {{HighlightParam|''<SDK-st-image-weston-openstlinux-weston-stm32mp1.tar.xz>''}} -C $WORKDIR/
+
:{{PC$}} tar --strip-components=1 -xf {{EcosystemRelease/Package | revision=latest | package=SDK package | request=name}} -C $WORKDIR/
 
:{{PC$}} tar xf {{HighlightParam|''<MyDeviceTree_fromCubeMX.tar.xz>''}} -C $WORKDIR/
 
:{{PC$}} tar xf {{HighlightParam|''<MyDeviceTree_fromCubeMX.tar.xz>''}} -C $WORKDIR/
   
Line 62: Line 62:
   
   
The commands described in the rest of the document must be run in an SDK environment context: ([[Install_the_SDK#Starting_up_the_SDK|Starting_up_the_SDK]]).
+
The commands described in the rest of the document must be run in an SDK environment context: ([[Install_the_SDK#Start the SDK up|Starting_up_the_SDK]]).
   
 
==Updating the kernel device tree ==
 
==Updating the kernel device tree ==
Line 69: Line 69:
 
The  following chapters describe the procedure to generate and copy the new DTB into the target.
 
The  following chapters describe the procedure to generate and copy the new DTB into the target.
 
=== Kernel : unpack and patch sources ===
 
=== Kernel : unpack and patch sources ===
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/linux-stm32mp-*''. Please notice a ''grep "$>" README.HOW_TO.txt'' describes the few commands needed to build the artifact of kernel}}
+
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/linux-stm32mp-*''. Note: the "README.HOW_TO.txt" file contains some useful ''grep "$> commands that are needed to build the artifact of kernel}}.
   
 
Run the following command into a shell:
 
Run the following command into a shell:
Line 87: Line 87:
   
 
=== Kernel : regenerate the kernel DTB ===
 
=== Kernel : regenerate the kernel DTB ===
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/linux-stm32mp-*''. Please notice a ''grep "$>" README.HOW_TO.txt'' describes the few commands needed to build the artifact of kernel}}
+
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/linux-stm32mp-*''. Note: the "README.HOW_TO.txt" file contains some useful ''grep "$> commands that are needed to build the artifact of kernel}}.
   
 
:{{PC$}} pushd $WORKDIR/kernel/kernel-sources
 
:{{PC$}} pushd $WORKDIR/kernel/kernel-sources
Line 98: Line 98:
   
 
=== Kernel : copy the DTB into bootfs ===
 
=== Kernel : copy the DTB into bootfs ===
First of all [[#Updating bootfs]] with the new DTB so that it is taken it into account at the next boot of the target.
+
First, update all the [[#Updating bootfs]] with the new DTB for it to be taken it into account on the next boot of the target.
   
Then, if needed, [[#Updating extlinux]] for the target according to this new DTB filename. This is only required if the filename of the generated DTB is different from the one used by extlinux to boot.
+
Then, if needed, edit by [[#Updating extlinux]] for the target with this new DTB filename. This is only required if the filename of the generated DTB is different from the one used by extlinux to boot.
   
 
==Updating BOOT firmwares ==
 
==Updating BOOT firmwares ==
BOOT firmwares are TF-A and U-Boot and should be updated together (CubeMX provides devicetree for TF-A and U-Boot).
+
The BOOT firmwares are TF-A and U-Boot and must be updated together (CubeMX provides devicetree for TF-A and U-Boot).
 
===Updating the TF-A device tree ===
 
===Updating the TF-A device tree ===
 
To update the TF-A device tree, replace the DTB part of the TF-A binary.<br/>
 
To update the TF-A device tree, replace the DTB part of the TF-A binary.<br/>
Line 110: Line 110:
 
Below the procedure to generate TF-A with a new DTB and then flash it on the target:<br/>
 
Below the procedure to generate TF-A with a new DTB and then flash it on the target:<br/>
 
==== TF-A : unpack and patch sources ====
 
==== TF-A : unpack and patch sources ====
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/tf-a-stm32mp-*''. Please notice a ''grep "$>" README.HOW_TO.txt'' describes the few commands needed to build the artifact of tf-a}}
+
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/tf-a-stm32mp-*''. Note: the "README.HOW_TO.txt" file contains some useful ''grep "$> commands that are needed to build the artifact of tf-a}}.
   
 
:{{PC$}} pushd $WORKDIR
 
:{{PC$}} pushd $WORKDIR
Line 127: Line 127:
   
 
==== TF-A : regenerate TF-A ====
 
==== TF-A : regenerate TF-A ====
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/tf-a-stm32mp-*''. Please notice a ''grep "$>" README.HOW_TO.txt'' describes the few commands needed to build the artifact of tf-a}}
+
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/tf-a-stm32mp-*''. Note: the "README.HOW_TO.txt" file contains some useful ''grep "$> commands that are needed to build the artifact of tf-a}}.
 
First only the TF-A "intermediates" artifacts are generated, the FIP image will be generated at final step (U-Boot compilation).
 
First only the TF-A "intermediates" artifacts are generated, the FIP image will be generated at final step (U-Boot compilation).
   
Line 144: Line 144:
   
 
==== OP-TEE: unpack and patch sources ====
 
==== OP-TEE: unpack and patch sources ====
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/optee-os-stm32mp-*''. Please notice a ''grep "$>" README.HOW_TO.txt'' describes the few commands needed to build the artifact of OP-TEE}}
+
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/optee-os-stm32mp-*''. Note: the "README.HOW_TO.txt" file contains some useful ''grep "$> commands that are needed to build the artifact of OP-TEE}}.
   
 
:{{PC$}} pushd $WORKDIR
 
:{{PC$}} pushd $WORKDIR
Line 157: Line 157:
 
==== OP-TEE: copy the DTS in the source code ====
 
==== OP-TEE: copy the DTS in the source code ====
 
:{{PC$}} pushd $WORKDIR
 
:{{PC$}} pushd $WORKDIR
:{{PC$}} cp MyDeviceTree_fromCubeMX/u-boot/* sources/arm-ostl-linux-gnueabi/optee-os-stm32mp-*/optee-os-sources/core/arch/arm/dts/
+
:{{PC$}} cp MyDeviceTree_fromCubeMX/optee/* sources/arm-ostl-linux-gnueabi/optee-os-stm32mp-*/optee-os-sources/core/arch/arm/dts/
 
:{{PC$}} popd
 
:{{PC$}} popd
   
 
==== OP-TEE: regenerate fip image within new OP-TEE ====
 
==== OP-TEE: regenerate fip image within new OP-TEE ====
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-*''. Please notice a ''grep "$>" README.HOW_TO.txt'' describes the few commands needed to build the artifact of OP-TEE}}
+
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-*''. Note: the "README.HOW_TO.txt" file contains some useful ''grep "$> commands that are needed to build the artifact of OP-TEE}}.
   
 
:{{PC$}} pushd $WORKDIR/sources/arm-ostl-linux-gnueabi/optee-os-stm32mp-[0-9]*/optee-os-sources
 
:{{PC$}} pushd $WORKDIR/sources/arm-ostl-linux-gnueabi/optee-os-stm32mp-[0-9]*/optee-os-sources
Line 170: Line 170:
   
 
=== Updating the U-Boot device tree ===
 
=== Updating the U-Boot device tree ===
To update the U-Boot device tree, need to replace the U-Boot DTB in FIP image.
+
To update the U-Boot device tree, replace the U-Boot DTB in FIP image.
   
 
==== U-Boot : unpack and patch sources ====
 
==== U-Boot : unpack and patch sources ====
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-*''. Please notice a ''grep "$>" README.HOW_TO.txt'' describes the few commands needed to build the artifact of U-Boot}}
+
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-*''. Note: the "README.HOW_TO.txt" file contains some useful ''grep "$> commands that are needed to build the artifact of U-Boot}}.
   
 
:{{PC$}} pushd $WORKDIR
 
:{{PC$}} pushd $WORKDIR
Line 189: Line 189:
   
 
==== U-Boot : regenerate fip image within new U-Boot binary====
 
==== U-Boot : regenerate fip image within new U-Boot binary====
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-*''. Please notice a ''grep "$>" README.HOW_TO.txt'' describes the few commands needed to build the artifact of U-Boot}}
+
{{Info|The procedure below is an extract of the README.HOW_TO.txt file which is available in ''$WORKDIR/sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-*''. Note: the "README.HOW_TO.txt" file contains some useful ''grep "$> commands that are needed to build the artifact of U-Boot}}.
   
 
:{{PC$}} pushd $WORKDIR/sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-v[0-9]*/u-boot-sources
 
:{{PC$}} pushd $WORKDIR/sources/arm-ostl-linux-gnueabi/u-boot-stm32mp-v[0-9]*/u-boot-sources
Line 207: Line 207:
 
'''extlinux''' describes how U-Boot boots. Updating '''extlinux''' consists in updating the extlinux.conf:
 
'''extlinux''' describes how U-Boot boots. Updating '''extlinux''' consists in updating the extlinux.conf:
 
* In case of an DK-2 board booting from the sdcard. A '''stm32mp157f-dk2_extlinux.conf''' file is located in ''/boot/mmc0_extlinux/'',
 
* In case of an DK-2 board booting from the sdcard. A '''stm32mp157f-dk2_extlinux.conf''' file is located in ''/boot/mmc0_extlinux/'',
* otherwise if there is no specific extlinux.conf for your board then the '''extlinux.conf''' is taking into account.
+
* otherwise if there is no specific extlinux.conf for your board, then the '''extlinux.conf''' is taking into account.
   
 
'''extlinux.conf''' is the description of a boot menu with one or several entries; 'DEFAULT' selects the default entry.<br/>
 
'''extlinux.conf''' is the description of a boot menu with one or several entries; 'DEFAULT' selects the default entry.<br/>
Line 239: Line 239:
   
 
== Updating bootfs ==
 
== Updating bootfs ==
There are two methods to update bootfs  
+
There are two methods to update bootfs:
 
* <u>{{STDarkBlue|On an up and running target}}</u>
 
* <u>{{STDarkBlue|On an up and running target}}</u>
 
:{{PC$}} scp stm32mp157f-mydevicetree-mx.dtb root@{{HighlightParam|''<Target_IP>''}}:/boot/
 
:{{PC$}} scp stm32mp157f-mydevicetree-mx.dtb root@{{HighlightParam|''<Target_IP>''}}:/boot/
 
* <u>{{STDarkBlue|Directly into 'bootfs' image}}</u>
 
* <u>{{STDarkBlue|Directly into 'bootfs' image}}</u>
 
You do not need to have a target up and running. Only the "st-image-bootfs-openstlinux-weston-stm32mp1.ext4" file is required.
 
You do not need to have a target up and running. Only the "st-image-bootfs-openstlinux-weston-stm32mp1.ext4" file is required.
To modify an 'ext4' file, a loopback mount, avaible within any Linux Distribution (even through [[PC_prerequisites#WSL2_-28experimental-29|WSL2]]), is required:
+
To modify an 'ext4' file, a loopback mount, available within any Linux Distribution (even through [[PC_prerequisites#WSL2_-28experimental-29|WSL2]]), is required:
 
:{{PC$}} mkdir -p $WORKDIR/bootfs
 
:{{PC$}} mkdir -p $WORKDIR/bootfs
 
:{{PC$}} mount -o loop {{HighlightParam|''&lt;st-image-bootfs-openstlinux-weston-stm32mp1.ext4&gt;''}} $WORKDIR/bootfs
 
:{{PC$}} mount -o loop {{HighlightParam|''&lt;st-image-bootfs-openstlinux-weston-stm32mp1.ext4&gt;''}} $WORKDIR/bootfs
Line 250: Line 250:
 
:{{PC$}} umount $WORKDIR/bootfs
 
:{{PC$}} umount $WORKDIR/bootfs
 
:{{PC$}} sync
 
:{{PC$}} sync
Then use [[STM32CubeProgrammer]] to update the bootfs partiton
+
Then use [[STM32CubeProgrammer]] to update the bootfs partition.
   
 
=== Updating extlinux ===
 
=== Updating extlinux ===
Updating 'extlinux' consists in modifying the extlinux.conf. There are two ways to do this:
+
Updating 'extlinux' consists in modifying the extlinux.conf. There are two ways to proceed:
 
* <u>{{STDarkBlue|On an up and running target}}</u>
 
* <u>{{STDarkBlue|On an up and running target}}</u>
 
Open an ssh connection to the target or use a direct connection with a tty terminal. Then use an vi editor to modify the extlinux.conf file.<br/>
 
Open an ssh connection to the target or use a direct connection with a tty terminal. Then use an vi editor to modify the extlinux.conf file.<br/>
Line 261: Line 261:
 
* <u>{{STDarkBlue|Into 'bootfs' image directly}}</u>
 
* <u>{{STDarkBlue|Into 'bootfs' image directly}}</u>
 
You do not need to have a target up and running. Only the "st-image-bootfs-openstlinux-weston-stm32mp1.ext4" file is required.
 
You do not need to have a target up and running. Only the "st-image-bootfs-openstlinux-weston-stm32mp1.ext4" file is required.
To modify an 'ext4' file, a loopback mount tool, avaible in any Linux Distribution (even through [[PC_prerequisites#WSL2_-28experimental-29|WSL2]]), is needed:
+
To modify an 'ext4' file, a loopback mount tool, available in any Linux Distribution (even through [[PC_prerequisites#WSL2_-28experimental-29|WSL2]]), is needed:
 
:{{PC$}} mkdir -p $WORKDIR/bootfs
 
:{{PC$}} mkdir -p $WORKDIR/bootfs
 
:{{PC$}} sudo mount -o loop {{HighlightParam|&lt;st-image-bootfs-openstlinux-weston-stm32mp1.ext4&gt;}} $WORKDIR/bootfs
 
:{{PC$}} sudo mount -o loop {{HighlightParam|&lt;st-image-bootfs-openstlinux-weston-stm32mp1.ext4&gt;}} $WORKDIR/bootfs
Line 268: Line 268:
   
 
<noinclude>
 
<noinclude>
  +
{{PublicationRequestId | 24428| 2022-08-29 | }}
 
[[Category:How to build software]]
 
[[Category:How to build software]]
 
</noinclude>
 
</noinclude>