
ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

HASH device tree configuration

HASH device tree configuration – 28.01.2022
For further information contact your local STMicroelectronics sales office.

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 2 38For further information contact your local STMicroelectronics sales office.

Contents

1. HASH device tree configuration ... 3
2. Crypto API overview ... 8
3. Device tree ... 17
4. HASH internal peripheral .. 22
5. How to assign an internal peripheral to a runtime context ... 28
6. STM32CubeMX .. 35

Stable: 13.05.2020 - 08:37 / Revision: 13.05.2020 - 08:36Stable: 13.05.2020 - 08:37 / Revision: 13.05.2020 - 08:36

https://wiki.st.com

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 3 38For further information contact your local STMicroelectronics sales office.

Stable: 13.05.2020 - 08:37 / Revision: 13.05.2020 - 08:36

A of this page, on , was based off this revision.quality version approved 13 May 2020

Contents
 1 Article purpose ... 4
 2 DT bindings documentation ... 5
 3 DT configuration ... 6

 3.1 DT configuration (STM32 level) ... 6
 3.2 DT configuration (board level) ... 6
 3.3 DT configuration examples .. 6

 4 How to configure the DT using STM32CubeMX .. 7
 5 References ... 8

Stable: 13.05.2020 - 08:37 / Revision: 13.05.2020 - 08:36

https://wiki.st.com
https://wiki.st.com/stm32mpu-ecosystem-v2/index.php?title=HASH_device_tree_configuration&stableid=70687
https://wiki.st.com/stm32mpu-ecosystem-v2/index.php?title=Special:Log&type=review&page=HASH_device_tree_configuration

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 4 38For further information contact your local STMicroelectronics sales office.

Article purpose

This article explains how to configure the when it is assigned to the . In that case, it is internal peripheralHASH Linux®OS
controlled by the .Crypto framework

The configuration is performed using the mechanism that provides a hardware description of the HASH peripheral, device tree
used by the STM32 HASH driver.Linux

If the peripheral is assigned to another execution context, refer to How to assign an internal peripheral to a runtime context
article for guidelines on peripheral assignment and configuration.

1

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 5 38For further information contact your local STMicroelectronics sales office.

 bindings documentationDT

The is represented by the STM32 HASH device tree bindingsHASH [1]

2

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 6 38For further information contact your local STMicroelectronics sales office.

 configurationDT

This hardware description is a combination of the device tree files (extension) and device STM32 microprocessor .dtsi board
tree files (extension). See the for an explanation of the device tree file split..dts Device tree

STM32CubeMX can be used to generate the board device tree. Refer to for How to configure the DT using STM32CubeMX
more details.

 configuration (STM32 level)DT

The HASH node is declared in stm32mp151.dtsi . It describes the hardware register address, clock, interrupt, reset and dma.[2]

 hash1: hash@54002000 { Comments
 compatible = "st,stm32f756-hash";
 reg = <0x54002000 0x400>; -->
Register location and length
 interrupts = < _ 80 IRQ_TYPE_LEVEL_HIGH>; GIC SPI --> The
interrupt number used
 clocks = <&scmi0_clk CK_SCMI0_HASH1>;
 resets = <&scmi0_reset RST_SCMI0_HASH1>;
 dmas = <&mdma1 31 0x10 0x1000A02 0x0 0x0 0x0>; --> DMA
specifiers[3]
 dma-names = "in";
 dma-maxburst = <2>;
 status = "disabled";
 };

 Warning

This device tree part is related to STM32 microprocessors. It must be kept as is, without being
modified by the end-user.

 configuration (board level)DT
This part is used to enable the HASH used on a board which is done by setting the property to .status okay

 configuration examplesDT

&hash1 {
 status = "okay";
};

3

3.1

3.2

3.3

https://wiki.st.com

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 7 38For further information contact your local STMicroelectronics sales office.

How to configure the using STM32CubeMXDT

The tool can be used to configure the STM32MPU device and get the corresponding STM32CubeMX platform configuration
 files.device tree

The STM32CubeMX may not support all the properties described in the above paragraph. If so, the DT bindings documentation
tool inserts in the generated device tree. These sections can then be edited to add some properties and they are user sections
preserved from one generation to another. Refer to user manual for further information.STM32CubeMX

4

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 8 38For further information contact your local STMicroelectronics sales office.

References

Please refer to the following links for additional information:
 Device tree bindings
 STM32MP151 device tree file
 , STM32 MDMA controllerDocumentation/devicetree/bindings/dma/stm32-mdma.txt

Linux is a registered trademark of Linus Torvalds.®

Operating System

Device Tree

Generic Interrupt Controller

Serial Peripheral Interface

Direct Memory AccessStable: 19.10.2020 - 09:54 / Revision: 19.10.2020 - 09:52

A of this page, on , was based off this revision.quality version approved 19 October 2020

The Crypto is a cryptography framework in the kernel. It is dedicated to the parts of the kernel that deal with API Linux®

cryptography, such as IPsec and dm-crypt.

Contents
 1 Framework purpose ... 9
 2 System overview .. 10

 2.1 Description of the components .. 10
 2.2 API description .. 11

 3 Configuration .. 12
 3.1 Kernal configuration .. 12
 3.2 Devicetree configuration .. 12

 4 How to use the Crypto API framework ... 13
 5 Use cases ... 14
 6 How to trace and debug the framework ... 15

 6.1 How to monitor .. 15
 6.2 How to trace .. 15
 6.3 How to debug .. 15

 7 Generic source code location ... 16
 8 References ... 17

5

Stable: 19.10.2020 - 09:54 / Revision: 19.10.2020 - 09:52

https://github.com/STMicroelectronics/linux/blob/v5.4-stm32mp/Documentation/devicetree/bindings/crypto/st,stm32-hash.txt
https://github.com/STMicroelectronics/linux/blob/v5.4-stm32mp/arch/arm/boot/dts/stm32mp151.dtsi
https://github.com/STMicroelectronics/linux/blob/v5.4-stm32mp/Documentation/devicetree/bindings/dma/stm32-mdma.txt
https://wiki.st.com
https://wiki.st.com/stm32mpu-ecosystem-v2/index.php?title=Crypto_API_overview&stableid=74382
https://wiki.st.com/stm32mpu-ecosystem-v2/index.php?title=Special:Log&type=review&page=Crypto_API_overview

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 9 38For further information contact your local STMicroelectronics sales office.

Framework purpose

The purpose of this article is to introduce the Crypto framework:API
general information
main component/stakeholders
how to use the Crypto API
use cases

The Crypto framework mainly includes all popular and (encryption) functions.API hash block ciphers

A is a string or number generated from a text string. The length of the resulting string or number is fixed and widely varies hash
with small variations of the input. The best hashing algorithms are designed so that it is impossible to turn a hash back into its
original string. Hashing is particularly useful to compare a value with a stored value. However it cannot store its plain
representation for security reasons. This makes hashing an ideal solution to store passwords.

Encryption turns data into a series of unreadable characters which length is not fixed. The encrypted strings can reversed back
into their original decrypted form if the right key is not provided. Encrypting a confidential file is a good way to prevent anyone
from accessing its content.

Drivers for (block cipher), HASH (hash) and (cyclic redundancy check) are integrated within the Crypto kernel CRYP CRC API
service.

1

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 10 38For further information contact your local STMicroelectronics sales office.

System overview

Crypto API

Description of the components

 Information

OpenSSL and dm-crypt are not part of the Crypto framework but they are typical users of the API
Crypto services. API

From User space to hardware
OpenSSL (User space)

2

2.1

https://wiki.st.com
https://wiki.st.com

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 11 38For further information contact your local STMicroelectronics sales office.

OpenSSL is a software library supporting the TLS and SSL protocols as well as cryptographic functions. Openssl is available [1]

in OpenSTLinux distribution.
dm-crypt (Kernel space)

dm-crypt is a kernel disk encryption subsystem. It is natively available in the standard kernel.[2] Linux
Cryptodev (Kernel space)

Cryptodev is a device driver which provides a general interface for userland applications. Although it is not part of the [3]

standard kernel, it is available in OpenSTLinux distribution.Linux
CryptoAPI core (Kernel space)

This layer represents the standard kernel cryptographic framework.Linux
hash, and (Kernel space)cryp crc32

These are the cryptographic drivers handling the internal peripherals.Linux
HASH, and (Hardware)CRYP CRC

These HW blocks handle hash, ciphering, and checksum.CRC

 descriptionAPI

The Crypto is documented in the Kernel Crypto section of the Kernel documentation . It offers both a API Linux API Linux [4]

kernel and a userland interface:
kernel internal interface, used in particular by dm-crypt.

userland algorithm interface (socket) named _ALG . OpenSSL can use this interface.AF [5]

In addition to the socket user interface, a more friendly interface, the cryptodev, can be used. It offers the /dev/crypto ioctl . API
It is roughly described by the cryptodev.h header file. OpenSSL can be configured to use this interface as an alternative to [6]

the historical _ALG interface.AF

2.2

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 12 38For further information contact your local STMicroelectronics sales office.

Configuration

Kernal configuration
The Crypto is activated by default in ST deliveries. Nevertheless, if a specific configuration is required, you can use API Linux
Menuconfig tool: and select:Menuconfig or how to configure kernel

[*] Cryptographic --->API
 [*] Hardware crypto devices --->
 [*] Support for STM32 crc accelerators
 [*] Support for STM32 hash accelerators
 [*] Support for STM32 crypto accelerators

Devicetree configuration
By default the drivers are not enabled, so this needs to be added if you want to use HW accelerators.

crc: .CRC_device_tree_configuration
hash: .HASH_device_tree_configuration
crypto: .CRYP_device_tree_configuration

3

3.1

3.2

https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/Menuconfig_or_how_to_configure_kernel
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/CRC_device_tree_configuration
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/CRYP_device_tree_configuration

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 13 38For further information contact your local STMicroelectronics sales office.

How to use the Crypto frameworkAPI

The Crypto framework can be used by other kernel modules.API

The Crypto documentation provides kernel code examples :API [7]

Symmetric-key cipher operation.
Operational state memory with SHASH.

4

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 14 38For further information contact your local STMicroelectronics sales office.

Use cases

Disk encryption

This is a typical example of Crypto framework usage. Refer to LUKS for a standard disk encryption process.API [8]

5

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 15 38For further information contact your local STMicroelectronics sales office.

How to trace and debug the framework

How to monitor
The list of available ciphers is given in /proc/crypto:

Board $> cat /proc/crypto

Output part showing that an STM32 driver provides with the CRC32 cipher:

...
name : crc32
driver : stm32-crc32
module : kernel
priority : 200
refcnt : 1
selftest : passed
internal : no
type : shash
blocksize : 1
digestsize : 4
...

How to trace
There are no specific traces for this framework.

How to debug
There are no specific debug means for this framework.

6

6.1

6.2

6.3

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 16 38For further information contact your local STMicroelectronics sales office.

Generic source code location

CryptoAPI core
CryptoAPI interface
stm32 crypto drivers

7

https://github.com/STMicroelectronics/linux/blob/v5.4-stm32mp/crypto
https://github.com/STMicroelectronics/linux/blob/v5.4-stm32mp/include/linux/crypto.h
https://github.com/STMicroelectronics/linux/blob/v5.4-stm32mp/drivers/crypto/stm32

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 17 38For further information contact your local STMicroelectronics sales office.

References

 a software library supporting the TLS and SSL protocols as well as cryptographic functions.OpenSSL
 a kernel disk encryption subsystemdm-crypt
 a device driver which provides a general interface for userland applicationsCryptodev
 the official crypto kernel documentationLinux Kernel Crypto API API
 specification of the userland Crypto API Userland interface API
 cryptodev header file specifying the userland cryptodev.h API
 some kernel code examples using the Crypto frameworkCrypto API kernel code examples API
 a disk encryption specificationLUKS (Linux Unified Key Setup)

Application programming interface

Linux is a registered trademark of Linus Torvalds.®

Cryptographic processor

Cyclic redundancy check calculation unit

GPIO alternate functionStable: 04.02.2020 - 07:47 / Revision: 04.02.2020 - 07:34

A of this page, on , was based off this revision.quality version approved 4 February 2020

Contents
 1 Purpose .. 18

 1.1 Source files .. 18
 1.2 Bindings ... 18
 1.3 Build .. 18
 1.4 Tools .. 19

 2 STM32 .. 20
 3 How to go further .. 21
 4 References ... 22

8

Stable: 04.02.2020 - 07:47 / Revision: 04.02.2020 - 07:34

https://www.openssl.org/
https://en.wikipedia.org/wiki/Dm-crypt
http://www.logix.cz/michal/devel/cryptodev/
https://www.kernel.org/doc/html/v5.4/crypto/index.html
https://www.kernel.org/doc/html/v5.4/crypto/userspace-if.html
https://github.com/nmav/cryptodev-linux/blob/master/crypto/cryptodev.h
https://www.kernel.org/doc/html/v5.4/crypto/api-samples.html
https://gitlab.com/cryptsetup/cryptsetup/blob/master/README.md
https://wiki.st.com
https://wiki.st.com/stm32mpu-ecosystem-v2/index.php?title=Device_tree&stableid=67407
https://wiki.st.com/stm32mpu-ecosystem-v2/index.php?title=Special:Log&type=review&page=Device_tree

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 18 38For further information contact your local STMicroelectronics sales office.

Purpose

The objective of this chapter is to give general information about the device tree.
An extract of the explains it as follows:device tree specification[1]

"A device tree is a tree data structure with nodes that describe the devices in a system. Each node has property/value pairs that
describe the characteristics of the device being represented. Each node has exactly one parent except for the root node, which
has no parent. ... Rather than hard coding every detail of a device into an operating system, many aspect of the hardware can
be described in a data structure that is passed to the operating system at boot time."

In other words, a device tree describes the hardware that can not be located by probing. For more information, please refer to
the device tree specification[1]

Source files
.dts: The device tree source (). This format is a textual representation of a device tree in a form that can be processed DTS

by DTC (Device Tree Compiler) into a binary device tree in the form expected by software components: Kernel, Linux® U-Boot
and .TF-A

.dtsi: Source files that can be included from a file.DTS

Bindings
The device tree data structures and properties are named . Those bindings are described in:bindings

The Device tree specification for generic bindings.[1]

The software component documentations:

Linux® Kernel: Linux kernel device tree bindings
U-Boot: U-Boot device tree bindings
TF-A: TF-A device tree bindings

Build

A tool named DTC (Device Tree Compiler) allows compiling the sources into a binary.DTS
input file: the file described in section above..dts
output file: the file described in section above..dtb

More information are available in DTC manual .[2]

1

1.1

1.2

1.3

https://github.com/STMicroelectronics/linux/tree/v5.4-stm32mp/Documentation/devicetree/bindings/
https://github.com/STMicroelectronics/u-boot/tree/v2020.01-stm32mp/Documentation/devicetree/bindings/
https://github.com/STMicroelectronics/arm-trusted-firmware/tree/v2.2-stm32mp/docs/devicetree/bindings/

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 19 38For further information contact your local STMicroelectronics sales office.

Device tree build process

DTC
source
code is
located
here . [3]

DTC tool
is also
available
directly in
particular
software

components:
. For those components, the device tree building is directly integrated in the component build Kernel, , ...Linux U-Boot TF-A

process.

 Information

If dts files use some defines, dts files should be preprocessed before being compiled by DTC.

Tools
The device tree compiler offers also some tools:

fdtdump: Print a readable version of a flattened device tree file (dtb)
fdtget: Read properties from a device tree
fdtput: Write properties to a device tree
...

There are several ways to get those tools:

In the device tree compiler project source code[3]

Directly in software components: Kernel, u-boot, tf-a ...

Available in Debian package[4]

1.4

https://wiki.st.com
https://wiki.st.com

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 20 38For further information contact your local STMicroelectronics sales office.

STM32

For STM32MP1, the device tree is used by three software components: , and .Linux kernel® U-Boot TF-A

The device tree is part of the . It can also be generated by tool.OpenSTLinux distribution STM32CubeMX

To have more information about the device tree usage on STM32MP1 (how the device tree source files are split, how to find
the device tree source files per software components, how is generating the device tree ...) see STM32CubeMX STM32MP15

 page.device tree

2

https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/STM32MP15_Linux_kernel_overview
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/U-Boot_overview
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/TF-A_overview
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/OpenSTLinux_distribution
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/STM32MP15_device_tree
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/STM32MP15_device_tree

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 21 38For further information contact your local STMicroelectronics sales office.

How to go further

Device Tree for Dummies - Free Electrons[5]

Device Tree Reference - eLinux.org[6]

Device Tree usage - eLinux.org[7]

3

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 22 38For further information contact your local STMicroelectronics sales office.

References

 1.01.11.2 ,Device tree specificationhttps://github.com/devicetree-org/devicetree-specification/releases/tag/v0.2(latest)
 ,DTC manualhttps://git.kernel.org/pub/scm/utils/dtc/dtc.git/tree/Documentation/manual.txt(master)

 3.03.1 ,DTC source codehttps://git.kernel.org/pub/scm/utils/dtc/dtc.git(master)
 ,DTC debian packagehttps://packages.debian.org/search?keywords=device-tree-compiler(master)
 , Free ElectronsDevice Tree for Dummies
 , eLinux.orgDevice Tree Reference
 , eLinux.orgDevice Tree Usage

Device Tree Source (in software context) or Digital Temperature Sensor (in peripheral context)

Linux is a registered trademark of Linus Torvalds.®

Das U-Boot -- the Universal Boot Loader (see)U-Boot_overview

Trusted Firmware for Arm Cortex-AStable: 12.02.2020 - 16:46 / Revision: 12.02.2020 - 16:44

A of this page, on , was based off this revision.quality version approved 12 February 2020

Contents
 1 Article purpose ... 23
 2 Peripheral overview .. 24

 2.1 Features .. 24
 2.2 Security support .. 24

 3 Peripheral usage and associated software .. 25
 3.1 Boot time ... 25
 3.2 Runtime ... 25

 3.2.1 Overview ... 25
 3.2.2 Software frameworks .. 25
 3.2.3 Peripheral configuration ... 25
 3.2.4 Peripheral assignment .. 25

 4 How to go further .. 27
 5 References ... 28

4

Stable: 12.02.2020 - 16:46 / Revision: 12.02.2020 - 16:44

https://github.com/devicetree-org/devicetree-specification/releases/tag/v0.2
https://git.kernel.org/pub/scm/utils/dtc/dtc.git/tree/Documentation/manual.txt
https://git.kernel.org/pub/scm/utils/dtc/dtc.git
https://packages.debian.org/search?keywords=device-tree-compiler
https://events.linuxfoundation.org/sites/events/files/slides/petazzoni-device-tree-dummies.pdf
https://elinux.org/Device_Tree_Reference
https://elinux.org/Device_Tree_Usage
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/U-Boot_overview
https://wiki.st.com
https://wiki.st.com/stm32mpu-ecosystem-v2/index.php?title=HASH_internal_peripheral&stableid=68236
https://wiki.st.com/stm32mpu-ecosystem-v2/index.php?title=Special:Log&type=review&page=HASH_internal_peripheral

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 23 38For further information contact your local STMicroelectronics sales office.

Article purpose

The purpose of this article is to:
briefly introduce the HASH peripheral and its main features
indicate the level of security supported by this hardware block
explain how each instance can be allocated to the three runtime contexts and linked to the corresponding software

components
explain, when necessary, how to configure the HASH peripheral.

1

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 24 38For further information contact your local STMicroelectronics sales office.

Peripheral overview

The peripheral is used to compute a message digest. HASH
Digest algorithms could be:

MD5[1]

SHA[2] (1, 224, 256)

The peripheral is also able to give the used for authentication using the same algorithm support.HASH HMAC[3]

Features
Refer to the for the complete list of features, and to the software components, introduced STM32MP15 reference manuals
below, to see which features are implemented.

Security support
HASH1 is a peripheral (under control)secure ETZPC
HASH2 is a peripheral .non secure

2

2.1

2.2

https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/STM32MP15_resources#Reference_manuals
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/ETZPC_internal_peripheral

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 25 38For further information contact your local STMicroelectronics sales office.

Peripheral usage and associated software

Boot time
HASH1 instance is used as boot device to support binary authentication.
HASH2 is not used at boot time.

Runtime

Overview

HASH1 instance can be allocated to:

the -A7 secure core to be controlled in by the Arm®Cortex® OP-TEE OP-TEE HASH driver

or

the -A7 non-secure core to be controlled in by the Arm®Cortex® Linux® Linux Crypto framework

HASH2 instance can be allocated to:

the -M4 to be controlled in STM32Cube Package by Arm®Cortex® MPU STM32Cube HASH driver

Chapter describes which peripheral instance can be assigned to which context.Peripheral assignment

Software frameworks

Domain Peripheral Software frameworks Comment

-A7Cortex

secure

()OP-TEE

-A7Cortex

non-secure

()Linux

-M4Cortex

(STM32Cube)

Security HASH
OP-TEE HASH

driver
Linux Crypto

framework
STM32Cube
HASH driver

Peripheral configuration

The configuration is applied by the firmware running in the context to which the peripheral is assigned. The configuration can be
done alone via the tool for all internal peripherals, and then manually completed (particularly for external STM32CubeMX
peripherals), according to the information given in the corresponding software framework article.

Peripheral assignment

Check boxes illustrate the possible peripheral allocations supported by :STM32 MPU Embedded Software

 means that the peripheral can be assigned () to the given runtime context.

 is used for system peripherals that cannot be unchecked because they are statically connected in the device.

Refer to for more information on how to assign peripherals manually How to assign an internal peripheral to a runtime context
or via . STM32CubeMX
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possiblities might
be described in .STM32MP15 reference manuals

3

3.1

3.2

3.2.1

3.2.2

3.2.3

3.2.4

https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/OP-TEE_overview
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/STM32CubeMP1_architecture
https://wiki.st.com
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/OP-TEE_overview
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/OP-TEE_overview
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/STM32CubeMP1_architecture
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/STM32CubeMP1_architecture
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/STM32MPU_Embedded_Software_architecture_overview
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/STM32MP15_resources#Reference_manuals

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 26 38For further information contact your local STMicroelectronics sales office.

Internal peripherals

Domain Periphera
l

Runtime allocation Comment

Instance

-A7Cortex

secure

()OP-TEE

-A7Cortex

non-secure

()Linux

-M4Cortex

(STM32Cub

e)

Security HASH
HASH1

Assignment (single
choice)

HASH2

https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/STM32MP15_peripherals_overview
https://wiki.st.com

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 27 38For further information contact your local STMicroelectronics sales office.

How to go further

Not applicable.

4

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 28 38For further information contact your local STMicroelectronics sales office.

References

 https://en.wikipedia.org/wiki/MD5
 https://en.wikipedia.org/wiki/Secure_Hash_Algorithms
 https://en.wikipedia.org/wiki/HMAC

Message Digest 5

Secure Hash Algorithm

Hash-based Message Authentication Code

Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.®

Cortex®

Open Portable Trusted Execution Environment

Linux is a registered trademark of Linus Torvalds.®

Microprocessor UnitStable: 16.02.2021 - 17:29 / Revision: 16.02.2021 - 17:11

A of this page, on , was based off this revision.quality version approved 16 February 2021

Contents
 1 Article purpose ... 29
 2 Introduction ... 30
 3 STM32CubeMX generated assignment ... 31
 4 Manual assignment .. 33

 4.1 TF-A .. 33
 4.2 U-boot .. 33
 4.3 Linux kernel ... 34
 4.4 STM32Cube .. 34
 4.5 OP-TEE ... 35

5

Stable: 16.02.2021 - 17:29 / Revision: 16.02.2021 - 17:11

https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/Secure_Hash_Algorithms
https://en.wikipedia.org/wiki/HMAC
https://wiki.st.com
https://wiki.st.com
https://wiki.st.com/stm32mpu-ecosystem-v2/index.php?title=How_to_assign_an_internal_peripheral_to_a_runtime_context&stableid=76496
https://wiki.st.com/stm32mpu-ecosystem-v2/index.php?title=Special:Log&type=review&page=How_to_assign_an_internal_peripheral_to_a_runtime_context

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 29 38For further information contact your local STMicroelectronics sales office.

Article purpose

This article explains how to configure the software that assigns a peripheral to a .runtime context

1

https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/Getting_started_with_STM32_MPU_devices#Multiple-core_architecture_concepts

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 30 38For further information contact your local STMicroelectronics sales office.

Introduction

A peripheral can be to a via the configuration defined in the . The can be either assigned runtime context device tree device tree
generated by the tool or edited manually. STM32CubeMX

On STM32MP15 line devices, the assignement can be strengthened by a hardware mechanism: the , ETZPC internal peripheral
which is configured by the boot loader. The isolates the peripherals for the TF-A ETZPC internal peripheral -A7 secure Cortex
or the context. The peripherals assigned to the context are visible from any context, -M4 Cortex -A7 non-secure Cortex
without any isolation.

The components running on the platform after execution (such as , , and) must have a TF-A U-Boot Linux STM32Cube OP-TEE
 that is consistent with the assignment and the isolation configurations. configuration

The following sections describe how to configure , , and STM32Cube accordingly.TF-A U-Boot Linux

 Information

Beyond the peripherals assignment, explained in this article, it is also important to understand How to
 (i.e clocks, regulator, gpio,...), shared between the -A7 and -configure system resources Cortex Cortex

M4 contexts

2

https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/Getting_started_with_STM32_MPU_devices#Multiple-core_architecture_concepts
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/ETZPC_internal_peripheral
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/TF-A_overview
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/ETZPC_internal_peripheral
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/U-Boot_overview
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/STM32MP15_Linux_kernel_overview
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/STM32CubeMP1_architecture
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/OP-TEE_overview
https://wiki.st.com
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/How_to_configure_system_resources
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/How_to_configure_system_resources

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 31 38For further information contact your local STMicroelectronics sales office.

STM32CubeMX generated assignment

The screenshot below shows the user interface:STM32CubeMX
I2C2 peripheral is selected, on the left
I2C2 Mode and Configuration panel, on the right, shows that this instance can be assigned to the I2C -A7 non-secure Cortex

or the (that is selected) runtime context -M4 Cortex
I2C mode is enabled in the drop down menu

 Information

The context assignment table is displayed inside each peripheral panel but Mode and Configuration
it is possible to display it for all the peripherals in the menu via the option Options Show contexts

The button, on the top right, produces the following:GENERATE CODE
The with the configuration that isolates the I2C2 instance (in the example) for the device treeTF-A ETZPC -M4 Cortex

context. This same device tree can be used by , when enabledOP-TEE
The widely inherited from the one, just below device treeU-Boot Linux
The with the node disabled for and enabled for the coprocessor kernel device treeLinux I2C Linux
The with I2C2 initialization codeSTM32Cube project HAL

The section, just below, illustrates what STM32CubeMX is generating as it follows the same example.Manual assignment

 Information

3

https://wiki.st.com
https://wiki.st.com
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/ETZPC_internal_peripheral
https://wiki.st.com

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 32 38For further information contact your local STMicroelectronics sales office.

In addition of this generation, the user may have to manually complete the system resources
configuration in the user sections embedded in the STM32CubeMX generated device tree. Refer to Ho

 for details. w to configure system resources

https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/How_to_configure_system_resources
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/How_to_configure_system_resources

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 33 38For further information contact your local STMicroelectronics sales office.

Manual assignment

This section gives step by step instructions, per software components, to manually perform the peripherals assignments.
It takes the same I2C2 example as the previous section, that showed how to use STM32CubeMX, in order to make the move
from one approach to the other easier.

 Information

The assignments combinations described in the article are STM32MP15 peripherals overview
naturally supported by . Note that the STM32MPU Embedded Software distribution STM32MP15

 may describe more options that would require embedded software adaptations reference manual

TF-A
The assignment follows the , with below possible values:ETZPC device tree configuration

DECPROT_S_RW for the (Secure like) -A7 secure Cortex OS OP-TEE
DECPROT_NS_RW for the () -A7 non-secure Cortex Linux

As stated earlier in this article, there is no hardware isolation for the -A7 non-secure so this value allows Cortex
accesses from any context

DECPROT_ _ISOLATIONMCU for the (STM32Cube) -M4 Cortex

Example:

@etzpc: etzpc@5C007000 {
 st,decprot = <
 DECPROT(STM32MP1_ _ _ID, DECPROT_ , DECPROT_UNLOCK)ETZPC I2C2 _ISOLATIONMCU
 >;
};

 Information

The value can be used with as last parameter. In -M4 DECPROT_NS_RW DECPROT_LOCK Cortex
context, this specific configuration allows the generation of an error in the resource manager utility
while trying to use on -M4 side a peripheral that is assigned to the -A7 non-secure Cortex Cortex
context. If is used, then the utility allows the -M4 to use a peripheral that DECPROT_UNLOCK Cortex
is assigned to the -A7 non-secure context. Cortex

U-boot
No specific configuration is needed in to configure the access to the peripheral.U-Boot

 Information

U-Boot does not perform any check with regards to configuration before accessing to a ETZPC
peripheral. In case of inconsistency an illegal access is generated.

4

4.1

4.2

https://wiki.st.com
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/STM32MP15_peripherals_overview
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/STM32MPU_Embedded_Software_distribution
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/STM32MP15_resources#Reference_manuals
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/STM32MP15_resources#Reference_manuals
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/ETZPC_device_tree_configuration
https://wiki.st.com
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/Resource_manager_for_coprocessing#Overview
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/U-Boot_overview
https://wiki.st.com

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 34 38For further information contact your local STMicroelectronics sales office.

 Information

U-Boot checks the consistency between isolation configuration and kernel device tree ETZPC Linux
configuration to guarantee that kernel do not access an unauthorized device. In order to avoid Linux
the access to an unauthorized device, the U-boot fixes up the kernel to disable the Linux device tree
peripheral nodes which are not assigned to the -A7 non-secure context. Cortex

 kernelLinux
Each assignable peripheral is declared twice in the kernel device tree:Linux

Once in the node from , corresponding to assigned peripheralssoc arch/arm/boot/dts/stm32mp151.dtsi Linux
Example: i2c2

Once in the node from , corresponding to the -M4 context. m4_rproc arch/arm/boot/dts/stm32mp157-m4-srm.dtsi Cortex
Those nodes are disabled, by default.

Example: m4_i2c2

In the board device tree file (*.dts), each assignable peripheral has to be enabled only for the context to which it is assigned, in
line with configuration.TF-A
As a consequence, a peripheral assigned to the -A7 secure has both nodes disabled in the device tree. Cortex Linux

Example:

&i2c2 {
 status = "disabled";
};
...
&m4_i2c2 {
 status = "okay";
};

 Information

In addition of this assignment, the user may have to complete the system resources configuration in
the device tree nodes. Refer to for details. How to configure system resources

STM32Cube
There is no configuration to do on STM32Cube side regarding the assignment and isolation. Nevertheless, the resource

, relying on configuration, can be used to check that the corresponding peripheral is well assigned to the manager utility ETZPC
-M4 before using it.Cortex

Example:

int main(void)
{
...
 /* Initialize I2C2-- */
 /* Ask the resource manager for the I2C2 resource */
 (NULL, NULL);ResMgr_Init
 if ((, RESMGR_FLAGS_ACCESS_NORMAL | \ResMgr_Request RESMGR_ID_I2C2
 RESMGR_FLAGS_CPU1, 0, NULL) != RESMGR_OK)

4.3

4.4

https://wiki.st.com
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/STM32MP15_device_tree
https://github.com/STMicroelectronics/linux/blob/v5.4-stm32mp/arch/arm/boot/dts/stm32mp151.dtsi
https://github.com/STMicroelectronics/linux/blob/v5.4-stm32mp/arch/arm/boot/dts/stm32mp157-m4-srm.dtsi
https://wiki.st.com
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/How_to_configure_system_resources
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/Resource_manager_for_coprocessing#Overview
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/Resource_manager_for_coprocessing#Overview

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 35 38For further information contact your local STMicroelectronics sales office.

 RESMGR_FLAGS_CPU1, 0, NULL) != RESMGR_OK)
 {
 Error_Handler();
 }
...
 if ((&I2C2) != _OK)_ _InitHAL I2C HAL
 {
 Error_Handler();
 }
}

OP-TEE
The may use STM32MP1 resources. STM32MP1 drivers register the device driver they intend to used in OP-TEE OS OP-TEE
a secure context. This information is used to consolidate system configuration including secure hardening of configurable
peripherals.

In most case, the driver probe relies on device tree porperty .OP-TEE OP-TEE secure-status = "okay"

Cortex®

Trusted Firmware for Arm Cortex-A

Das U-Boot -- the Universal Boot Loader (see)U-Boot_overview

Linux is a registered trademark of Linus Torvalds.®

Inter-Integrated Circuit (Bi-directional 2-wire bus standard for efficient inter-IC control.)

Open Portable Trusted Execution Environment

Hardware Abstraction Layer

Operating System

Microcontroller Unit (MCUs have internal flash memory and are intended to operate with a minimum amount of external support
ICs. They commonly are a self-contained, system-on-chip (SoC) designs.)

Extended TrustZone Protection ControllerStable: 23.09.2020 - 13:22 / Revision: 12.06.2020 - 13:25

A of this page, on , was based off this revision.quality version approved 23 September 2020

4.5

Stable: 23.09.2020 - 13:22 / Revision: 12.06.2020 - 13:25

https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/OP-TEE_overview
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/U-Boot_overview
https://wiki.st.com
https://wiki.st.com/stm32mpu-ecosystem-v2/index.php?title=STM32CubeMX&stableid=71355
https://wiki.st.com/stm32mpu-ecosystem-v2/index.php?title=Special:Log&type=review&page=STM32CubeMX

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 36 38For further information contact your local STMicroelectronics sales office.

STM32CubeMX overview

This article describes STM32CubeMX, an official STMicroelectronics graphical software configuration tool.

The STM32CubeMX application helps developers to use the STM32 by means of a user interface, and guides the user through
to the initial configuration of a firmware project.

It provides the means to:
configure pin assignments, the clock tree, or internal peripherals
simulate the power consumption of the resulting project
configure and tune parametersDDR
generate initialization code for -M4HAL Cortex
generate the Device Tree for a kernel, and firmware for -A7Linux TF-A U-Boot Cortex

It uses a rich library of data from the STM32 microcontroller portfolio.

The application is intended to ease the initial development phase by helping developers to select the best product in terms of
features and power.

1

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 37 38For further information contact your local STMicroelectronics sales office.

STM32CubeMX main features

Peripheral and middleware parameters
Presents options specific to each supported software component

Peripheral assignment to processors
Allows assignment of each peripheral to -A Secure, -A Non-Secure, or -M processorsCortex Cortex Cortex

Power consumption calculator
Uses a database of typical values to estimate power consumption, DMIPS, and battery life

Code generation
Makes code regeneration possible, while keeping user code intact

Pinout configuration
Enables peripherals to be chosen for use, and assigns and alternate functions to pinsGPIO

Clock tree initialization
Chooses the oscillator and sets the PLL and clock dividers

DDR tunning tool
Ensures the configuration, testing, and tuning of the parameters. Using .MPU DDR U-Boot-SPL Embedded Software

2

https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/U-Boot_SPL:_DDR_interactive_mode

ST Restriced – Subject to Non-Disclosure Agreement – Do not copy

HASH device tree configuration

Page of 38 38For further information contact your local STMicroelectronics sales office.

How to get STM32CubeMX

Please, refer to the following link to find STM32CubeMX, the Release Note, the User Manual and the product STM32CubeMX
specification.

Doubledata rate (memory domain)

Hardware Abstraction Layer

Cortex®

Linux is a registered trademark of Linus Torvalds.®

Trusted Firmware for Arm Cortex-A

Das U-Boot -- the Universal Boot Loader (see)U-Boot_overview

General-Purpose Input/Output (A realization of open ended transmission between devices on an embedded level. These pins
available on a processor can be programmed to be used to either accept input or provide output to external devices depending
on user desires and applications requirements.)

Microprocessor Unit

3

https://www.st.com/en/development-tools/stm32cubemx.html
https://wiki.st.com/stm32mpu-ecosystem-v2/wiki/U-Boot_overview

	HASH device tree configuration
	1 Article purpose
	2 DT bindings documentation
	3 DT configuration
	3.1 DT configuration (STM32 level)
	3.2 DT configuration (board level)
	3.3 DT configuration examples

	4 How to configure the DT using STM32CubeMX
	5 References

	Crypto API overview
	1 Framework purpose
	2 System overview
	2.1 Description of the components
	2.2 API description

	3 Configuration
	3.1 Kernal configuration
	3.2 Devicetree configuration

	4 How to use the Crypto API framework
	5 Use cases
	6 How to trace and debug the framework
	6.1 How to monitor
	6.2 How to trace
	6.3 How to debug

	7 Generic source code location
	8 References

	Device tree
	1 Purpose
	1.1 Source files
	1.2 Bindings
	1.3 Build
	1.4 Tools

	2 STM32
	3 How to go further
	4 References

	HASH internal peripheral
	1 Article purpose
	2 Peripheral overview
	2.1 Features
	2.2 Security support

	3 Peripheral usage and associated software
	3.1 Boot time
	3.2 Runtime
	3.2.1 Overview
	3.2.2 Software frameworks
	3.2.3 Peripheral configuration
	3.2.4 Peripheral assignment

	4 How to go further
	5 References

	How to assign an internal peripheral to a runtime context
	1 Article purpose
	2 Introduction
	3 STM32CubeMX generated assignment
	4 Manual assignment
	4.1 TF-A
	4.2 U-boot
	4.3 Linux kernel
	4.4 STM32Cube
	4.5 OP-TEE

	STM32CubeMX
	1 STM32CubeMX overview
	2 STM32CubeMX main features
	3 How to get STM32CubeMX

